ÌâÄ¿ÄÚÈÝ
8£®ÈôÏòÁ¿$\overrightarrow{a}$=£¨1£¬-2£©£¬$\overrightarrow{b}$=£¨2£¬1£©£¬$\overrightarrow{c}$=£¨-4£¬-2£©£¬ÔòÏÂÁÐ˵·¨ÖÐÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©¢Ù$\overrightarrow{a}$¡Í$\overrightarrow{b}$£»¢ÚÏòÁ¿$\overrightarrow{a}$ÓëÏòÁ¿$\overrightarrow{c}$µÄ¼Ð½ÇΪ90¡ã£»¢Û¶ÔÍ¬Ò»Æ½ÃæÄÚµÄÈÎÒâÏòÁ¿$\overrightarrow{d}$£¬¶¼´æÔÚÒ»¶ÔʵÊýk1£¬k2£¬Ê¹µÃ$\overrightarrow{d}$=k1$\overrightarrow{b}$+k2$\overrightarrow{c}$£®
| A£® | 3 | B£® | 2 | C£® | 1 | D£® | 0 |
·ÖÎö ÔËÓÃÏòÁ¿´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬¼ÆËã¼´¿ÉÅжϢ٢ڣ»ÓÉÏòÁ¿¹²Ïß¶¨Àí£¬¿ÉµÃ$\overrightarrow{b}$£¬$\overrightarrow{c}$¹²Ïߣ¬ÓÉÆ½ÃæÏòÁ¿»ù±¾¶¨Àí£¬¼´¿ÉÅжϢۣ®
½â´ð ½â£ºÏòÁ¿$\overrightarrow{a}$=£¨1£¬-2£©£¬$\overrightarrow{b}$=£¨2£¬1£©£¬$\overrightarrow{c}$=£¨-4£¬-2£©£¬
ÓÉ$\overrightarrow{a}$•$\overrightarrow{b}$=1¡Á2+£¨-2£©¡Á1=0£¬¿ÉµÃ$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬¹Ê¢ÙÕýÈ·£»
ÓÉ$\overrightarrow{a}$•$\overrightarrow{c}$=1¡Á£¨-4£©+£¨-2£©¡Á£¨-2£©=0£¬¿ÉµÃ$\overrightarrow{a}$¡Í$\overrightarrow{c}$£¬¹Ê¢ÚÕýÈ·£»
ÓÉ$\overrightarrow{c}$=-2$\overrightarrow{b}$¿ÉµÃ$\overrightarrow{b}$£¬$\overrightarrow{c}$¹²Ïߣ¬ÓÉÆ½ÃæÏòÁ¿»ù±¾¶¨Àí£¬
¿ÉµÃ¶ÔÍ¬Ò»Æ½ÃæÄÚµÄÈÎÒâÏòÁ¿$\overrightarrow{d}$£¬²»¶¼´æÔÚÒ»¶ÔʵÊýk1£¬k2£¬Ê¹µÃ$\overrightarrow{d}$=k1$\overrightarrow{b}$+k2$\overrightarrow{c}$£®
¹Ê¢Û´íÎó£®
×ÛÉϿɵã¬ÕýÈ·µÄ¸öÊýΪ2£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄÐÔÖÊ£¬Ö÷ÒªÊÇÏòÁ¿´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬¿¼²éÆ½ÃæÏòÁ¿»ù±¾¶¨ÀíµÄÔËÓÃÒÔ¼°ÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | [-4£¬-1£© | B£® | £¨2£¬4] | C£® | [-4£¬-1£©¡È£¨2£¬4] | D£® | [2£¬4] |
| A£® | 2017n-m | B£® | n-2017m | C£® | m | D£® | n |
| A£® | $\frac{{x}^{2}}{41}$$-\frac{{y}^{2}}{16}$=1 | B£® | $\frac{{x}^{2}}{21}$$-\frac{{y}^{2}}{4}$=1 | C£® | $\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{4}$=1 | D£® | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 |
| A£® | 4 | B£® | 2 | C£® | $\sqrt{2}$ | D£® | 1 |
| A£® | $\frac{1}{18}$ | B£® | -$\frac{1}{18}$ | C£® | $\frac{17}{18}$ | D£® | -$\frac{17}{18}$ |
| A£® | £¨0£¬4£© | B£® | £¨4£¬9£© | C£® | £¨-1£¬4£© | D£® | £¨-1£¬9£© |