题目内容

1
-1
[
1-x2
-sinx]dx=
 
考点:定积分
专题:导数的概念及应用
分析:根据的定积分的运算和定积分的几何意义,
1
-1
[
1-x2
-sinx]dx=
1
-1
[
1-x2
dx-
1
-1
sinxdx,而
1
-1
[
1-x2
表示以原点为圆心,以1为半径的圆的面积的二分之一,问题得以解决.
解答: 解:
1
-1
[
1-x2
表示以原点为圆心,以1为半径的圆的面积的二分之一,故
1
-1
[
1-x2
=
π
2

1
-1
sinxdx=-cosx
|
1
-1
=-[cos1-cos(-1)]=0,
1
-1
[
1-x2
-sinx]dx=
1
-1
[
1-x2
dx-
1
-1
sinxdx=
π
2
-0
=
π
2

故答案为:
π
2
点评:本题主要考查了定积分的计算以及定积分的几何意义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网