题目内容
n∈Z+,则
+
+
+…+
= .
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)•(2n+1) |
考点:数列的求和
专题:等差数列与等比数列
分析:直接利用裂项相消法求数列的和.
解答:
解:∵
=
(
-
),
∴
+
+
+…+
=
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
(1+
-
-
)=
.
故答案为:
.
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)•(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| (2n-1)(3n+1) |
| 4n(2n+1) |
故答案为:
| (2n-1)(3n+1) |
| 4n(2n+1) |
点评:本题考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目