题目内容

n∈Z+,则
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)•(2n+1)
=
 
考点:数列的求和
专题:等差数列与等比数列
分析:直接利用裂项相消法求数列的和.
解答: 解:∵
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)•(2n+1)

=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
(1+
1
2
-
1
2n
-
1
2n+1
)=
(2n-1)(3n+1)
4n(2n+1)

故答案为:
(2n-1)(3n+1)
4n(2n+1)
点评:本题考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网