题目内容
10.下列命题中的真命题是( )| A. | ?x0∈R,使得sinx+cosx=$\frac{3}{2}$ | B. | ?x0∈R,使得$x_0^2-{x_0}+1=0$ | ||
| C. | ?x∈(0,+∞),ex>x+1 | D. | ?x∈(0,π),sinx>cosx |
分析 利用三角函数的最值判断A的正误;二次方程的根判断B的正误;函数的切线与函数的值的关系判断C的正误;反例判断D的正误.
解答 解:x∈R,sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})≤\sqrt{2}$,∵$\sqrt{2}<\frac{3}{2}$,∴?x0∈R,使得sinx+cosx=$\frac{3}{2}$,不正确;
x0∈R,$x_0^2-{x_0}+1=0$,对应的函数中因为△=-3<0,所以方程无解.所以B不正确;
?x∈(0,+∞),ex>x+1,因为y=ex,是增函数,x=0时,函数的切线方程为:y=x+1,所以选项C正确;
?x∈(0,π),sinx>cosx,显然x=$\frac{π}{6}$时,不满足不等式,所以选项D不正确;
故选:C.
点评 本题考查命题的真假的判断与应用,基本知识的考查.
练习册系列答案
相关题目
20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c(c>0),抛物线y2=2cx的准线交双曲线左支于A,B两点,且∠AOB=120°,其中O为原点,则双曲线的离心率为( )
| A. | 2 | B. | $1+\sqrt{2}$ | C. | $1+\sqrt{3}$ | D. | $1+\sqrt{5}$ |
1.已知圆x2+y2-10x+24=0的圆心是双曲线$\frac{x^2}{a^2}-\frac{y^2}{9}=1(a>0)$的一个焦点,则此双曲线的渐近线方程为( )
| A. | $y=±\frac{4}{3}x$ | B. | $y=±\frac{3}{4}x$ | C. | $y=±\frac{3}{5}x$ | D. | $y=±\frac{4}{5}x$ |
5.已知f(x)=sin$\frac{πx}{2}$,g(x)=cos$\frac{πx}{2}$则集合{x|f(x)=g(x)}等于( )
| A. | {x|x=4k+$\frac{1}{2}$,k∈Z} | B. | {x|x=2k+$\frac{1}{2}$,k∈Z} | C. | {x|x=4k±$\frac{1}{2}$,k∈Z} | D. | {x|x=2k+1,k∈Z} |
20.某工厂生产某种产品的产量x(吨)与相应的生产成本y(万元)有如下几组样本数据:
据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得到其回归直线的斜率为0.8,则当该产品的生产成本是6.7万元时,其相应的产量约是( )
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3.1 | 3.9 | 4.5 |
| A. | 8 | B. | 8.5 | C. | 9 | D. | 9.5 |