题目内容

15.已知数列{an}的前n项和为Sn,且a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉{N}^{*}}\\{{a}_{n},\frac{n}{3}∈{N}^{*}}\end{array}\right.$若S3n≤λ•3n-1恒成立,则实数λ的取值范围为[14,+∞).

分析 a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉{N}^{*}}\\{{a}_{n},\frac{n}{3}∈{N}^{*}}\end{array}\right.$,可得:a3n-1=a3n-2+3,a3n=a3n-1+3,可得a3n-2+a3n-1+a3n=3a3n-2+9.a3n+1=a3n=a3n-1+3=a3n-2+6,又a1=1,可得a3n-2=1+6(n-1)=6n-5.即可得出S3n=(a1+a2+a3)+…+(a3n-2+a3n-1+a3n)=9n2+3n.S3n≤λ•3n-1,即9n2+3n≤λ•3n-1,λ≥$\{\frac{9{n}^{2}+3n}{{3}^{n-1}}{\}}_{max}$.通过作差可得其单调性,即可得出最大值.

解答 解:∵a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉{N}^{*}}\\{{a}_{n},\frac{n}{3}∈{N}^{*}}\end{array}\right.$,
可得:a3n-1=a3n-2+3,a3n=a3n-1+3,可得a3n-2+a3n-1+a3n=3a3n-2+9.
a3n+1=a3n=a3n-1+3=a3n-2+6,又a1=1,
∴a3n-2=1+6(n-1)=6n-5.
∴S3n=(a1+a2+a3)+…+(a3n-2+a3n-1+a3n
=3(a1+a4+…+a3n-2)+9n
=3×$\frac{n(1+6n-5)}{2}$+9n
=9n2+3n.
S3n≤λ•3n-1,即9n2+3n≤λ•3n-1,∴λ≥$\{\frac{9{n}^{2}+3n}{{3}^{n-1}}{\}}_{max}$.
设$\frac{9{n}^{2}+3n}{{3}^{n-1}}$=cn,则cn+1-cn=$\frac{9(n+1)^{2}+3(n+1)}{{3}^{n}}$-$\frac{9{n}^{2}+3n}{{3}^{n-1}}$=$\frac{-2(3{n}^{2}-2n-2)}{{3}^{n-1}}$.
当n=1时,3n2-2n-2<0,即c1<c2
当n≥2时,3n2-2n-2>0,可得:c2>c3>c4>…>cn
因此(cnmax=c2=14.
∴λ≥14.
故答案为:[14,+∞).

点评 本题考查了等差数列的通项公式、数列递推关系、分类讨论方法、数列的单调性、作差法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网