ÌâÄ¿ÄÚÈÝ
3£®¼×Á÷Ë®ÏßÑù±¾µÄƵÊý·Ö²¼±í
| ÖÊÁ¿Ö¸±êÖµ | ƵÊý |
| £¨190£¬195] | 9 |
| £¨195£¬200] | 10 |
| £¨200£¬205] | 17 |
| £¨205£¬210] | 8 |
| £¨210£¬215] | 6 |
£¨¢ò£©Èô½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬Ä³¸öÔÂÄÚ¼×£¬ÒÒÁ½ÌõÁ÷Ë®Ïß¾ùÉú²úÁË5000¼þ²úÆ·£¬Ôò¼×£¬ÒÒÁ½
ÌõÁ÷Ë®Ïß·Ö±ðÉú²ú³ö²»ºÏ¸ñÆ·Ô¼¶àÉÙ¼þ£¿
£¨¢ó£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢»Ø´ðÊÇ·ñÓÐ85%µÄ°ÑÎÕÈÏΪ¡°¸ÃÆóÒµÉú²úµÄÕâ
ÖÖ²úÆ·µÄÖÊÁ¿Ö¸±êÖµÓë¼×£¬ÒÒÁ½ÌõÁ÷Ë®ÏßµÄÑ¡ÔñÓйء±£¿
| ¼×Éú²úÏß | ÒÒÉú²úÏß | ºÏ¼Æ | |
| ºÏ¸ñÆ· | |||
| ²»ºÏ¸ñÆ· | |||
| ºÏ¼Æ |
| P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨¢ñ£©ÀûÓã¨0.012+0.032+0.052£©¡Á5+0.076¡Á£¨x-205£©=0.5£¬¼´¿É¹À¼ÆÒÒÁ÷Ë®ÏßÉú²ú²úÆ·¸ÃÖÊÁ¿Ö¸±êÖµµÄÖÐλÊý£»
£¨¢ò£©Çó³ö¼×£¬ÒÒÁ½ÌõÁ÷Ë®ÏßÉú²úµÄ²»ºÏ¸ñµÄ¸ÅÂÊ£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ó£©¼ÆËã¿ÉµÃK2µÄ½üËÆÖµ£¬½áºÏ²Î¿¼ÊýÖµ¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨¢ñ£©ÉèÒÒÁ÷Ë®ÏßÉú²ú²úÆ·µÄ¸ÃÏîÖÊÁ¿Ö¸±êÖµµÄÖÐλÊýΪx£¬
ÒòΪ0.48=£¨0.012+0.032+0.052£©¡Á5£¼0.5£¼£¨0.012+0.032+0.052+0.076£©¡Á5=0.86£¬¡£¨1·Ö£©
Ôò£¨0.012+0.032+0.052£©¡Á5+0.076¡Á£¨x-205£©=0.5£¬¡£¨3·Ö£©
½âµÃ$x=\frac{3900}{19}$£® ¡£¨4·Ö£©
£¨¢ò£©Óɼף¬ÒÒÁ½ÌõÁ÷Ë®Ï߸÷³éÈ¡µÄ50¼þ²úÆ·¿ÉµÃ£¬¼×Á÷Ë®ÏßÉú²úµÄ²»ºÏ¸ñÆ·ÓÐ15¼þ£¬
Ôò¼×Á÷Ë®ÏßÉú²úµÄ²úƷΪ²»ºÏ¸ñÆ·µÄ¸ÅÂÊΪ${P_¼×}=\frac{15}{50}=\frac{3}{10}$£¬¡£¨5·Ö£©
ÒÒÁ÷Ë®ÏßÉú²úµÄ²úƷΪ²»ºÏ¸ñÆ·µÄ¸ÅÂÊΪ${P_ÒÒ}=£¨{0.012+0.028}£©¡Á5=\frac{1}{5}$£¬¡£¨6·Ö£©
ÓÚÊÇ£¬Èôij¸öÔÂÄÚ¼×£¬ÒÒÁ½ÌõÁ÷Ë®Ïß¾ùÉú²úÁË5000¼þ²úÆ·£¬Ôò¼×£¬ÒÒÁ½ÌõÁ÷Ë®ÏßÉú²úµÄ²»ºÏ¸ñÆ·¼þÊý·Ö±ðΪ£º$5000¡Á\frac{3}{10}=1500£¬5000¡Á\frac{1}{5}=1000$£® ¡£¨8·Ö£©
£¨¢ó£©2¡Á2ÁÐÁª±í£º
| ¼×Éú²úÏß | ÒÒÉú²úÏß | ºÏ¼Æ | |
| ºÏ¸ñÆ· | 35 | 40 | 75 |
| ²»ºÏ¸ñÆ· | 15 | 10 | 25 |
| ºÏ¼Æ | 50 | 50 | 100 |
Ôò${K^2}=\frac{{100¡Á{{£¨{350-600}£©}^2}}}{50¡Á50¡Á75¡Á25}=\frac{4}{3}¡Ö1.3$£¬¡£¨11·Ö£©
ÒòΪ1.3£¼2.072£¬
ËùÒÔûÓÐ85%µÄ°ÑÎÕÈÏΪ¡°¸ÃÆóÒµÉú²úµÄÕâÖÖ²úÆ·µÄ¸ÃÏîÖÊÁ¿Ö¸±êÖµÓë¼×£¬ÒÒÁ½ÌõÁ÷Ë®ÏßµÄÑ¡ÔñÓйء±£® ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é¸ÅÂʵļÆË㣬ÒÔ¼°¶ÀÁ¢ÐÔ¼ìÑ飬ÊôÖеµÌ⣮
| A£® | -5 | B£® | -3+4i | C£® | -3 | D£® | -5+4i |
| A£® | M=N | B£® | M⊆N | C£® | N⊆M | D£® | M¡ÉN=∅ |
| A£® | p¡Äq | B£® | £¨?p£©¡Äq | C£® | p¡Ä£¨?q£© | D£® | ?q |
| A£® | £¨0£¬0£© | B£® | £¨1£¬-1£© | C£® | £¨-1£¬1£© | D£® | £¨1£¬-1£©»ò£¨-1£¬1£© |
| A£® | 36 | B£® | 40 | C£® | 50 | D£® | 52 |
| A£® | $\frac{{\sqrt{2}}}{2}$ | B£® | $\frac{{\sqrt{3}}}{2}$ | C£® | $\frac{{\sqrt{5}-1}}{2}$ | D£® | $\frac{{\sqrt{42}}}{7}$ |
| A£® | $\frac{k¦Ð}{2}$Óë k¦Ð+$\frac{¦Ð}{2}$£¨k¡ÊZ£© | B£® | k¦Ð¡À$\frac{¦Ð}{3}$Óë $\frac{k¦Ð}{3}$£¨k¡ÊZ£© | ||
| C£® | £¨2k+1£©¦Ð Óë £¨4k¡À1£©¦Ð £¨k¡ÊZ£© | D£® | k¦Ð+$\frac{¦Ð}{6}$Óë 2k¦Ð¡À$\frac{¦Ð}{6}$£¨k¡ÊZ£© |
| A£® | x=-$\sqrt{2}$ | B£® | x=-4 | C£® | x=-1 | D£® | x=-8 |