题目内容
13.设复数z1,z2在复平面内的对应点关于原点对称,z1=2-i,则z1•z2=( )| A. | -5 | B. | -3+4i | C. | -3 | D. | -5+4i |
分析 复数z1,z2在复平面内的对应点关于原点对称,z1=2-i,可得z2=-2+i.再利用复数的运算法则即可得出.
解答 解:∵复数z1,z2在复平面内的对应点关于原点对称,z1=2-i,∴z2=-2+i.
则z1•z2=(2-i)(-2+i)=-3+4i.
故选:B.
点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
3.已知f(x)=$\left\{\begin{array}{l}{{e}^{x}+ax,x>0}\\{0,x=0}\\{{e}^{-x}-ax,x<0}\end{array}\right.$,若函数f(x)有三个零点,则实数a的值是( )
| A. | e | B. | $\frac{1}{e}$ | C. | -$\frac{1}{e}$ | D. | -e |
4.函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )

| A. | a>0,b>0,c>0,d<0 | B. | a>0,b>0,c<0,d<0 | C. | a<0,b<0,c>0,d>0 | D. | a>0,b>0,c>0,d>0 |
8.如图是总体密度曲线,下列说法正确的是( )

| A. | 组距越大,频率分布折线图越接近于它 | |
| B. | 样本容量越小,频率分布折线图越接近于它 | |
| C. | 阴影部分的面积代表总体在(a,b)内取值的百分比 | |
| D. | 阴影部分的平均高度代表总体在(a,b)内取值的百分比 |
18.设α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且$\frac{sinα}{cosα}$=$\frac{cosβ}{1-sinβ}$,则( )
| A. | 2α+β=$\frac{π}{2}$ | B. | 2α-β=$\frac{π}{2}$ | C. | α+2β=$\frac{π}{2}$ | D. | α-2β=$\frac{π}{2}$ |
5.设数列{an}满足a1=a,an+1=$\frac{a_n^2-2}{{{a_n}+1}}$(n∈N),若数列{an}是常数列,则a=( )
| A. | -2 | B. | -1 | C. | 0 | D. | (-1)n |
2.已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(-$\sqrt{3}$,2),则tan(α-$\frac{π}{6}$)的值为( )
| A. | -3$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{5}$ | C. | -$\frac{5\sqrt{3}}{3}$ | D. | -$\frac{3\sqrt{3}}{5}$ |
3.
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,如图是乙流水线样本的频率分布直方图.
甲流水线样本的频数分布表
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
甲流水线样本的频数分布表
| 质量指标值 | 频数 |
| (190,195] | 9 |
| (195,200] | 10 |
| (200,205] | 17 |
| (205,210] | 8 |
| (210,215] | 6 |
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
| 甲生产线 | 乙生产线 | 合计 | |
| 合格品 | |||
| 不合格品 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |