题目内容

设函数f(x)=
xlnx,x≥1
lnx
x
,0<x<1
,若{an}是公比大于0的等比数列,且a3a4a5=1,若f(a1)+f(a2)+…+f(a6)=2a1,则a1=
 
考点:分段函数的应用,等比数列的性质
专题:计算题,函数的性质及应用,等差数列与等比数列
分析:由题意可得f(x)+f(
1
x
)=0;故f(a2)+…+f(a6)=f(a2)+f(a6)+f(a3)+f(a5)+f(a4)=0,从而化f(a1)+f(a2)+…+f(a6)=f(a1)=2a1,从而解得.
解答: 解:若x>1,则0<
1
x
<1;
则f(x)=xlnx,f(
1
x
)=
ln
1
x
1
x
=-xlnx;
故f(x)+f(
1
x
)=0;
又∵{an}是公比大于0的等比数列,且a3a4a5=1,
∴a4=1;
故a6a2=a3a5=a4=1;
故f(a2)+…+f(a6)=f(a2)+f(a6)+f(a3)+f(a5)+f(a4)=0+0+0=0;
故f(a1)+f(a2)+…+f(a6)=f(a1)=2a1
若a1>1,则a1lna1=2a1,则a1=e2
若0<a1<1,则
lna1
a1
<0,故无解;
故答案为:e2
点评:本题考查了等比数列的定义及分段函数的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网