题目内容
8.已知a=2${\;}^{\frac{1}{3}}$,b=log3$\frac{1}{2}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则( )| A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
分析 利用对数函数、指数函数的单调性求解.
解答 解:∵1=20<a=2${\;}^{\frac{1}{3}}$<${2}^{\frac{1}{2}}$<1.5,
b=log3$\frac{1}{2}$<log31=0,
c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$>log${\;}_{\frac{1}{2}}$$\frac{1}{2\sqrt{2}}$=1.5,
∴c>a>b.
故选:C.
点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数的单调性的合理运用.
练习册系列答案
相关题目