题目内容
已知数列{an}中,a1=1,an+1=a
+2an(n∈N+).
(1)证明数列{log2(an+1)}是等比数列,并求数列{an}的通项公式;
(2)记数列{bn}满足bn=
,求证:bn=
,并求数列{bn}的前n项和Sn.
2 n |
(1)证明数列{log2(an+1)}是等比数列,并求数列{an}的通项公式;
(2)记数列{bn}满足bn=
| an+1 |
| an+1 |
| an+1-an |
| anan+1 |
考点:数列递推式
专题:等差数列与等比数列
分析:(1)把已知递推式两边同时加1,配方后代入log2(an+1)得答案;
(2)由bn=
得到bn=
,裂项后即可求得数列{bn}的前n项和Sn.
(2)由bn=
| an+1 |
| an+1 |
| an2+an |
| anan+1 |
解答:
证明:(1)由an+1=an2+2an,得
an+1+1=an2+2an+1,即an+1+1=(an+1)2,
∴log2(an+1+1)=2log2(an+1),
又a1=1,
∴数列{log2(an+1)}是以log2(1+1)=log22=1为首项,以2为公比的等比数列,
∴log2(an+1)=2n-1,即an+1=22n-1.
∴数列{an}的通项公式为an=22n-1-1;
(2)bn=
=
,
∵an+1=an2+2an,
∴an+1-an=an2+an,
∴bn=
,
∵bn=
=
-
.
∴Sn=
-
+
-
+…+
-
=
-
=1-
.
an+1+1=an2+2an+1,即an+1+1=(an+1)2,
∴log2(an+1+1)=2log2(an+1),
又a1=1,
∴数列{log2(an+1)}是以log2(1+1)=log22=1为首项,以2为公比的等比数列,
∴log2(an+1)=2n-1,即an+1=22n-1.
∴数列{an}的通项公式为an=22n-1-1;
(2)bn=
| an+1 |
| an+1 |
| an2+an |
| anan+1 |
∵an+1=an2+2an,
∴an+1-an=an2+an,
∴bn=
| an+1-an |
| anan+1 |
∵bn=
| an+1-an |
| anan+1 |
| 1 |
| an |
| 1 |
| an+1 |
∴Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| 22n-1 |
点评:本题考查了数列递推式,考查了等比关系的确定,考查了学生灵活分析问题和解决问题的能力,是中档题.
练习册系列答案
相关题目
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值,若过点A(0,16)作曲线y=f(x)的切线,则切线方程是( )
| A、9x+y-16=0 |
| B、9x-y+16=0 |
| C、x+9y-16=0 |
| D、x-9y+16=0 |