题目内容

11.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{x^2}-x,x∈[0,1)\\-{(\frac{1}{2})^{|{x-\frac{3}{2}}|}},x∈[1,2)\end{array}$,若当x∈[-4,-2)时,不等式f(x)≥$\frac{t^2}{4}-t+\frac{1}{2}$恒成立,则实数t的取值范围是(  )
A.[2,3]B.[1,3]C.[1,4]D.[2,4]

分析 根据条件,只要求出函数f(x)在x∈[-4,-2)上的最小值即可得到结论.

解答 解:当x∈[0,1)时,f(x)=x2-x∈[-$\frac{1}{4}$,0],
当x∈[1,2)时,f(x)=-(0.5)|x-1.5|∈[-1,$-\frac{\sqrt{2}}{2}$],
∴当x∈[0,2)时,f(x)的最小值为-1,
又∵函数f(x)满足f(x+2)=2f(x),
当x∈[-2,0)时,f(x)的最小值为-$\frac{1}{2}$,
当x∈[-4,-2)时,f(x)的最小值为-$\frac{1}{4}$,
若x∈[-4,-2]时,f(x)≥$\frac{{t}^{2}}{4}$-t+$\frac{1}{2}$恒成立,
∴$-\frac{1}{4}$≥$\frac{{t}^{2}}{4}$-t+$\frac{1}{2}$恒成立.
即t2-4t+3≤0,
即(t-3)(t-1)≤0,
即1≤t≤3,
即t∈[1,3],
故选:B.

点评 本题考查的知识点是函数恒成立问题,函数的最值,一元二次不等式的解法,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网