题目内容
11.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{x^2}-x,x∈[0,1)\\-{(\frac{1}{2})^{|{x-\frac{3}{2}}|}},x∈[1,2)\end{array}$,若当x∈[-4,-2)时,不等式f(x)≥$\frac{t^2}{4}-t+\frac{1}{2}$恒成立,则实数t的取值范围是( )| A. | [2,3] | B. | [1,3] | C. | [1,4] | D. | [2,4] |
分析 根据条件,只要求出函数f(x)在x∈[-4,-2)上的最小值即可得到结论.
解答 解:当x∈[0,1)时,f(x)=x2-x∈[-$\frac{1}{4}$,0],
当x∈[1,2)时,f(x)=-(0.5)|x-1.5|∈[-1,$-\frac{\sqrt{2}}{2}$],
∴当x∈[0,2)时,f(x)的最小值为-1,
又∵函数f(x)满足f(x+2)=2f(x),
当x∈[-2,0)时,f(x)的最小值为-$\frac{1}{2}$,
当x∈[-4,-2)时,f(x)的最小值为-$\frac{1}{4}$,
若x∈[-4,-2]时,f(x)≥$\frac{{t}^{2}}{4}$-t+$\frac{1}{2}$恒成立,
∴$-\frac{1}{4}$≥$\frac{{t}^{2}}{4}$-t+$\frac{1}{2}$恒成立.
即t2-4t+3≤0,
即(t-3)(t-1)≤0,
即1≤t≤3,
即t∈[1,3],
故选:B.
点评 本题考查的知识点是函数恒成立问题,函数的最值,一元二次不等式的解法,难度较大.
练习册系列答案
相关题目
1.已知圆M:(x-5)2+(y-3)2=9,圆N:x2+y2-4x+2y-9=0,则两圆圆心的距离等于( )
| A. | 25 | B. | 10 | C. | 2$\sqrt{5}$ | D. | 5 |
6.下列四个函数中,既是奇函数又在(0,+∞)上为增函数的是( )
| A. | y=ln$\sqrt{1-{x}^{2}}$ | B. | y=3x | C. | y=x2-2x | D. | y=x3 |
3.当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为( )
| A. | $\sqrt{3}$ | B. | 2或-$\sqrt{3}$ | C. | $\sqrt{3}$或-$\sqrt{3}$ | D. | 2或-$\sqrt{3}$或-$\frac{7}{4}$ |
20.已知函数f(x)=-lnx+x+h,在区间$[{\frac{1}{e},e}]$上任取三个实数a,b,c均存在以f(a),f(b),f(c)为边长的三角形,则实数h的取值范围是( )
| A. | (-∞,-1) | B. | (-∞,e-3) | C. | (-1,+∞) | D. | (e-3,+∞) |