题目内容

14.已知函数f(x)=cos2x-(sinx-cosx)2+1;
(1)求f(x)的最小正周期;
(2)求f(x)在区间$[{\frac{π}{2},π}]$的最大值与最小值.

分析 (1)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期;
(2)x∈$[{\frac{π}{2},π}]$上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值即可.

解答 解:函数f(x)=cos2x-(sinx-cosx)2+1;
化简可得:f(x)=cos2x+2sinxcosx=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)
(1)∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)由x∈$[{\frac{π}{2},π}]$上时,
可得:2x+$\frac{π}{4}$∈[$\frac{5π}{4}$,$\frac{9π}{4}$].
结合三角函数的图象和性质,可知:当2x+$\frac{π}{4}$=$\frac{3π}{2}$时,f(x)取得最小值为$-\sqrt{2}$.
当2x+$\frac{π}{4}$=$\frac{9π}{4}$时,f(x)取得最大值为$\sqrt{2}×\frac{\sqrt{2}}{2}$=1.
故得f(x)在区间$[{\frac{π}{2},π}]$的最大值为1,最小值为$-\sqrt{2}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网