题目内容

9.如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于点P
(Ⅰ)证明:PF∥面ECD;
(Ⅱ)证明:AE⊥面ECD.

分析 (Ⅰ)取CD中点G,连结EG,PG,推导出四边形EFPG为平行四边形,由此能证明FP∥平面ECD.
(Ⅱ)取AD中点M,连结EM,MC,推导出四边形EFAM为平行四边形,从而EM∥FA,进而EM⊥平面ABCD,CD⊥平面EFAD,由此能证明AE⊥平面ECD.

解答 证明:(Ⅰ)取CD中点G,连结EG,PG,
∵点P为矩形ABCD对角线交点,
∴在△ACD中,PG$\underset{∥}{=}$$\frac{1}{2}AD$,
又EF=1,AD=2,EF∥AD,
∴EF$\underset{∥}{=}$PG,∴四边形EFPG为平行四边形,
∴FP∥EG,
又FP?平面ECD,EG?平面ECD,
∴FP∥平面ECD.
(Ⅱ)取AD中点M,连结EM,MC,∴EF=AM=1,EF$\underset{∥}{=}$$\frac{1}{2}AD$,
∴四边形EFAM为平行四边形,∴EM∥FA,
又FA⊥平面ABCD,∴EM⊥平面ABCD,
又MC2=MD2+CD2=2,EM2=1,
∴EC2=MC2+EM2=3,
又AE2=2,AC2=AB2+BC2=1+4=5,
∴AC2=AE2+EC2,∴AE⊥EC,
又CD⊥AD,∴CD⊥平面EFAD,
∴CD⊥AE,又EC∩ED=D,
∴AE⊥平面ECD.

点评 本题考查线面平行的证明,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网