题目内容

18.若函数f(x)=lnx+$\frac{a}{x}$在区间[1,e]上最小值为$\frac{3}{2}$,则实数a的值为(  )
A.$\frac{3}{2}$B.$\sqrt{e}$C.$\frac{e}{2}$D.非上述答案

分析 由于f′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,x∈[1,e],对a分a≤1与1<a≤e、a>e三类讨论,分别求得f(x)min,利用f(x)min=$\frac{3}{2}$即可求得答案.

解答 解:∵f(x)=lnx+$\frac{a}{x}$,
∴f′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,
∵x∈[1,e],
∴当a≤1时,f′(x)≥0,f(x)=lnx+$\frac{a}{x}$在区间[1,e]上单调递增,
∴f(x)min=f(1)=a=$\frac{3}{2}$与a≤0矛盾,故a≤1不成立,
∴a>1.
①若1<a≤e,f′(x)=$\frac{x-a}{{x}^{2}}$,在区间[1,a)上,f'(x)<0,函数f(x)单调递减,在区间(a,e]上,f'(x)≥0,函数f(x)单调递增,
∴当x=a时,f(x)=lnx+$\frac{a}{x}$在区间[1,e]上取得极小值f(a),也是最小值,
∴f(x)min=f(a)=1na+1=$\frac{3}{2}$,解得:a=$\sqrt{e}$∈[1,e],满足题意;
②若a>e,f′(x)=$\frac{x-a}{{x}^{2}}$<0,f(x)=lnx+$\frac{a}{x}$在区间[1,e]上单调递减,
∴f(x)min=f(e)=1+$\frac{a}{e}$=$\frac{3}{2}$,解得:a=$\frac{e}{2}$<e与a>e矛盾,故a≠$\frac{e}{2}$,
综上所述,实数a的值为$\sqrt{e}$.
故选:B.

点评 本题考查利用导数求闭区间上函数的最值,突出考查利用导数求函数的极值与最值的应用,考查分类讨论思想与综合运算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网