ÌâÄ¿ÄÚÈÝ

4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®ÒÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$£®
£¨¢ñ£©½«ÇúÏßCºÍÖ±Ïßl»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³Ì»¥»¯·½·¨£¬½«ÇúÏßCºÍÖ±Ïßl»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÓÉÓÚµãQÊÇÇúÏßCÉϵĵ㣬Ôò¿ÉÉèµãQµÄ×ø±êΪ£¨$\sqrt{3}$cos¦È£¬sin¦È£©£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÃ$\frac{{x}^{2}}{3}+{y}^{2}$=1£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}$=1£®¡­£¨2·Ö£©
ÓɦÑsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¬»¯¼òµÃ£¬¦Ñsin¦È+¦Ñcos¦È=2£¬¡­£¨4·Ö£©
¡àx+y=2£®
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y=2£®¡­£¨5·Ö£©
£¨¢ò£©ÓÉÓÚµãQÊÇÇúÏßCÉϵĵ㣬Ôò¿ÉÉèµãQµÄ×ø±êΪ£¨$\sqrt{3}$cos¦È£¬sin¦È£©£¬¡­£¨6·Ö£©
µãQµ½Ö±ÏßlµÄ¾àÀëΪd=$\frac{|\sqrt{3}cos¦È+sin¦È-2|}{\sqrt{2}}$¡­£¨7·Ö£©
=$\frac{|2cos£¨¦È-\frac{¦Ð}{6}£©-2|}{\sqrt{2}}$£®¡­£¨8·Ö£©
µ±cos£¨¦È-$\frac{¦Ð}{6}$£©=-1ʱ£¬dmax=2$\sqrt{2}$£®¡­£¨9·Ö£©
¡àµãQµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óֵΪ2$\sqrt{2}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽµÄÔËÓ㬿¼²é²ÎÊý·½³Ì£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø