ÌâÄ¿ÄÚÈÝ
4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®ÒÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$£®£¨¢ñ£©½«ÇúÏßCºÍÖ±Ïßl»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®
·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³Ì»¥»¯·½·¨£¬½«ÇúÏßCºÍÖ±Ïßl»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÓÉÓÚµãQÊÇÇúÏßCÉϵĵ㣬Ôò¿ÉÉèµãQµÄ×ø±êΪ£¨$\sqrt{3}$cos¦È£¬sin¦È£©£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÃ$\frac{{x}^{2}}{3}+{y}^{2}$=1£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}$=1£®¡£¨2·Ö£©
ÓɦÑsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¬»¯¼òµÃ£¬¦Ñsin¦È+¦Ñcos¦È=2£¬¡£¨4·Ö£©
¡àx+y=2£®
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y=2£®¡£¨5·Ö£©
£¨¢ò£©ÓÉÓÚµãQÊÇÇúÏßCÉϵĵ㣬Ôò¿ÉÉèµãQµÄ×ø±êΪ£¨$\sqrt{3}$cos¦È£¬sin¦È£©£¬¡£¨6·Ö£©
µãQµ½Ö±ÏßlµÄ¾àÀëΪd=$\frac{|\sqrt{3}cos¦È+sin¦È-2|}{\sqrt{2}}$¡£¨7·Ö£©
=$\frac{|2cos£¨¦È-\frac{¦Ð}{6}£©-2|}{\sqrt{2}}$£®¡£¨8·Ö£©
µ±cos£¨¦È-$\frac{¦Ð}{6}$£©=-1ʱ£¬dmax=2$\sqrt{2}$£®¡£¨9·Ö£©
¡àµãQµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óֵΪ2$\sqrt{2}$£®¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽµÄÔËÓ㬿¼²é²ÎÊý·½³Ì£¬ÊôÓÚÖеµÌ⣮
| A£® | 1 | B£® | $\sqrt{13}$ | C£® | 13 | D£® | $\sqrt{7-2\sqrt{3}}$ |
| A£® | $\frac{5}{12}$ | B£® | $\frac{7}{12}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{1}{2}$ |
| A£® | x1£¾x2 | B£® | x1£¾|x2| | C£® | x1£¼x2 | D£® | x${\;}_{1}^{2}$£¾x${\;}_{2}^{2}$ |
| A£® | {2£¬3£¬4£¬5} | B£® | {-1£¬0} | C£® | {-1£¬0£¬1£¬2} | D£® | { 2£¬3£¬4} |
| A£® | 53 | B£® | 43 | C£® | 51 | D£® | 67 |