题目内容
12.定义在R上的奇函数f(x)满足:对于任意x∈R,有f(x)=f(2-x),且f(1)=1若$tanα=\frac{1}{3}$,则f(10sinαcosα)的值为-1.分析 由tanα=$\frac{1}{3}$可求得10sinαcosα,根据奇函数性质及f(x)=f(2-x),可求得答案.
解答 解:∵tanα=$\frac{1}{3}$,
∴10sinαcosα=$\frac{10sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{10tanα}{1{+tan}^{2}α}$=$\frac{10×\frac{1}{3}}{1+\frac{1}{9}}$=3,
∵f(x)为R上的奇函数,
∴f(-x)=-f(x),
又f(x)=f(2-x),
所以f(3)=f(2-3)=f(-1)=-f(1)=-1,
故答案为:-1.
点评 本题考查函数奇偶性的性质、同角三角函数的基本关系式,考查学生灵活运用知识分析问题解决问题的能力.
练习册系列答案
相关题目
20.抛物线y2=8x的焦点为F,过F作直线l交抛物线于A、B两点,设$|{\overrightarrow{FA}}|=m,\overrightarrow{|{FB}|}=n$,则m•n的取值范围为( )
| A. | (0,4] | B. | (0,16] | C. | [16,+∞) | D. | [4,+∞) |
1.已知空间四边形OABC,M在AO上,满足$\frac{AM}{MO}$=$\frac{1}{2}$,N是BC的中点,且$\overrightarrow{AO}$=$\overrightarrow{a}$,$\overrightarrow{AB}$=$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{c}$用a,b,c表示向量$\overrightarrow{MN}$为( )
| A. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ | B. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$ | C. | -$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ | D. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$ |