题目内容

在平面直角坐标系中,准线方程为y=4的抛物线标准方程为
 
;双曲线x2-
y2
9
=1的渐近线方程为
 
考点:双曲线的简单性质,抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据准线方程,可知抛物线的焦点在y轴的负半轴,再设抛物线的标准形式为x2=-2py,根据准线方程求出p的值,代入即可得到答案;将双曲线化成标准方程,得到a=3且b=2,利用双曲线渐近线方程的公式加以计算,可得答案.
解答: 解:由题意可知抛物线的焦点在y轴的负半轴
设抛物线标准方程为:x2=-2py
∵准线方程为y=4,∴p=8
抛物线标准方程为x2=-16y;
由双曲线的标准方程,得a=1且b=3,双曲线的渐近线方程为y=±3x.
故答案为:x2=-16y;y=±3x.
点评:本题主要考查抛物线的标准方程、抛物线的简单性质,给出双曲线的方程,求它的渐近线,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网