题目内容

已知双曲线
x2
4
-
y2
b2
=1(b∈N*)的两个焦点为F1,F2,O为坐标原点,点P在双曲线上,且|OP|<5,若|PF1|、|F1F2|、|PF1|成等比数列,则b2等于(  )
A、1B、2C、3D、4
考点:双曲线的简单性质,等比数列的通项公式
专题:综合题,圆锥曲线的定义、性质与方程
分析:通过等比数列双曲线的定义,余弦定理推出:|OP|2=20+3b2.利用|OP|<5,b∈N,求出b的值
解答: 解:由题意,|PF1|、|F1F2|、|PF2|成等比数列可知,|F1F2|2=|PF1||PF2|,
即4c2=|PF1||PF2|,
由双曲线的定义可知|PF1|-|PF2|=4,即|PF1|2+|PF2|2-2|PF1||PF2|=16,
可得|PF1|2+|PF2|2-8c2=16…①
设∠POF1=θ,则∠POF2=π-θ,
由余弦定理可得:|PF2|2=c2+|OP|2-2|OF2||OP|cos(π-θ),|PF1|2=c2+|OP|2-2|OF1||OP|cosθ,
|PF2|2+PF1|2=2c2+2|OP|2,…②,
由①②化简得:|OP|2=8+3c2=20+3b2
因为|OP|<5,b∈N,所以20+3b2<25.
所以b=1.
故选:A
点评:本题考查双曲线的定义,余弦定理以及等比数列的应用,是有难度的综合问题,考查分析问题解决问题的能力
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网