题目内容
6.已知数列{an}的通项公式是an=$\left\{\begin{array}{l}{2^{-n}}\;\;\;\;\;\;(n是奇数)\\ \frac{1}{{2n+{n^2}}}\;\;(n是偶数)\end{array}$,则它的前4项和为$\frac{19}{24}$.分析 利用数列的通项公式求出数列的前4项,然后求和即可.
解答 解:数列{an}的通项公式是an=$\left\{\begin{array}{l}{2^{-n}}\;\;\;\;\;\;(n是奇数)\\ \frac{1}{{2n+{n^2}}}\;\;(n是偶数)\end{array}$,
可得a1=$\frac{1}{2}$,a2=$\frac{1}{8}$,a3=$\frac{1}{8}$,a4=$\frac{1}{24}$,
则它的前4项和为:$\frac{1}{2}+\frac{1}{8}+\frac{1}{8}+\frac{1}{24}$=$\frac{19}{24}$.
故答案为:$\frac{19}{24}$.
点评 本题考查数列的求和,考查计算能力.
练习册系列答案
相关题目
18.在2016年高考结束后,针对高考成绩是否达到了考生自己预期水平的情况,某校在高三部分毕业生内部进行了抽样调查,现从高三年级A、B、C、D、E、F六个班随机抽取了50人,将统计结果制成了如下的表格:
(Ⅰ)根据上述的表格,估计该校高三学生2016年的高考成绩达到自己的预期水平的概率;
(Ⅱ)若从E班、F班的抽取对象中,进一步各班随机选取2名同学进行详细调查,记选取的4人中,高考成绩没有达到预期水平的人数为ξ,求随机变量ξ的分布列和数学期望.
| 班级 | A | B | C | D | E | F |
| 抽取人数 | 6 | 10 | 12 | 12 | 6 | 4 |
| 其中达到预期水平的人数 | 3 | 6 | 6 | 6 | 4 | 3 |
(Ⅱ)若从E班、F班的抽取对象中,进一步各班随机选取2名同学进行详细调查,记选取的4人中,高考成绩没有达到预期水平的人数为ξ,求随机变量ξ的分布列和数学期望.
19.若函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是( )
| A. | (0,$\frac{1}{2}$) | B. | (-∞,1) | C. | (0,+∞) | D. | (0,1) |
1.某班主任对全班40名学生进行了作业量多少的调查.数据如下表:
(Ⅰ)请完善上表中所缺的有关数据;
(Ⅱ)根据表中数据,问是否有95%的把握认为“喜欢玩游戏与作业量的多少有关系”?
附:χ2=$\frac{{n{{(n}_{11}n}_{22}{{-n}_{12}n}_{21})}^{2}}{{(n}_{11}{+n}_{12}){(n}_{21}{+n}_{22}){(n}_{11}{+n}_{21}){(n}_{12}{+n}_{22})}$.
| 认为作业多 | 认为作业不多 | 总计 | |
| 喜欢玩游戏 | 20 | 10 | |
| 不喜欢玩游戏 | 2 | 8 | |
| 总计 |
(Ⅱ)根据表中数据,问是否有95%的把握认为“喜欢玩游戏与作业量的多少有关系”?
| P(x2≥k) | 0.100 0.050 0.010 |
| k | 2.706 3.841 6.635 |
11.若不等式组$\left\{\begin{array}{l}{x+a≥0}\\{4-2x>x-2}\end{array}\right.$有解,则实数a的取值范围是( )
| A. | a≥-2 | B. | a<-2 | C. | a≤-2 | D. | a>-2 |
18.数列{an}中,a1=3,且an+1=an-2(n∈N*),则a8=( )
| A. | 17 | B. | 19 | C. | -13 | D. | -11 |