题目内容

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(  )
A、
x2
4
-
y2
5
=1
B、
x2
5
-
y2
4
=1
C、
x2
3
-
y2
6
=1
D、
x2
6
-
y2
3
=1
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:由题意因为圆C:x2+y2-6x+5=0把它变成圆的标准方程知其圆心为(3,0),利用双曲线的右焦点为圆C的圆心及双曲线的标准方程建立a,b的方程.再利用双曲线的两条渐近线均和圆C:x2+y2-6x+5=0相切,建立另一个a,b的方程,解出它们,即可得到所求方程.
解答: 解:因为圆C:x2+y2-6x+5=0?(x-3)2+y2=4,
由此知道圆心C(3,0),圆的半径为2,
又因为双曲线的右焦点为圆C的圆心,
而双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),
∴a2+b2=9①
又双曲线的两条渐近线均和圆C:x2+y2-6x+5=0相切,
而双曲线的渐近线方程为:y=±
b
a
x⇒bx±ay=0⇒
3b
a2+b2
=2②
联立①②,解得:
b=2
a2=5

∴双曲线的方程:
x2
5
-
y2
4
=1.
故选B.
点评:此题重点考查了直线与圆相切的等价条件,还考查了双曲线及圆的标准方程及利用方程的思想进行解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网