题目内容

4.如图所示,三棱柱ABC-A1B1C1的底面是边长为2正三角形,D是A1C1的中点,且AA1⊥平面ABC,AA1=3.
(Ⅰ)求证:A1B∥平面B1DC;
(Ⅱ)求二面角D-B1C-C1的余弦值.

分析 (1)连结BC1,B1C,交于点O,连结OD,则OD∥A1B,由此能证明A1B∥平面B1DC.
(2)以D为原点,DC1为x轴,DB1为y轴,过D作平面A1B1C1的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角D-B1C-C1的余弦值.

解答 证明:(1)连结BC1,B1C,交于点O,连结OD,
∵三棱柱ABC-A1B1C1的底面是边长为2正三角形,D是A1C1的中点,
∴OD∥A1B,
∵A1B?平面B1DC,OD?平面B1DC,
∴A1B∥平面B1DC.
(2)∵三棱柱ABC-A1B1C1的底面是边长为2正三角形,D是A1C1的中点,且AA1⊥平面ABC,AA1=3.
∴以D为原点,DC1为x轴,DB1为y轴,过D作平面A1B1C1的垂线为z轴,建立空间直角坐标系,
则D(0,0,0),B1(0,$\sqrt{3}$,0),C(1,0,3),C1(1,0,0),
$\overrightarrow{C{B}_{1}}$=(-1,$\sqrt{3}$,-3),$\overrightarrow{CD}$=(-1,0,-3),$\overrightarrow{C{C}_{1}}$=(0,0,-3),
设平面B1DC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=-x+\sqrt{3}y-3z=0}\\{\overrightarrow{n}•\overrightarrow{CD}=-x-3z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(-3,0,1),
设平面B1CC1的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{C{B}_{1}}=-a+\sqrt{3}b-3c=0}\\{\overrightarrow{m}•\overrightarrow{C{C}_{1}}=-3c=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=($\sqrt{3},1,0$),
设二面角D-B1C-C1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{3}}{\sqrt{10}•\sqrt{4}}$=$\frac{3\sqrt{30}}{20}$.
∴二面角D-B1C-C1的余弦值为$\frac{{3\sqrt{30}}}{20}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网