题目内容
14.省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N(100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的$\frac{1}{3}$,则此次考试成绩不低于120分的学生约有100人.分析 根据正态分布的对称性求出100到120分的概率,再计算成绩不低于120分的概率,从而得出人数.
解答 解:设学生考试成绩为X,则P(80<X<100)=$\frac{1}{3}$,
∴P(100<X<120)=P(80<X<100)=$\frac{1}{3}$,
又P(X>100)=$\frac{1}{2}$,
∴P(X≥120)=P(X>100)-P(100<X<120)=$\frac{1}{6}$,
∴成绩不低于120分的学生约有600×$\frac{1}{6}$=100人.
故答案为:100.
点评 本题考查了正态分布的特点,属于中档题.
练习册系列答案
相关题目
2.学校在10名男教师和5名女教师中随机选取2名教师到西部支教,所选2名教师恰为1名男教师和1名女教师的概率为( )
| A. | 1 | B. | $\frac{11}{21}$ | C. | $\frac{10}{21}$ | D. | $\frac{5}{21}$ |
6.为了解春季昼夜温差大小与种子发芽多少之间的关系,现从4月的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如表格:
(1)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\overrightarrow{a}$
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 日 期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
| 温差x/°C | 10 | 11 | 13 | 12 | 8 |
| 发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\overrightarrow{a}$
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
3.函数$y=sin(2x-\frac{π}{3})$的图象经过下列平移,所得图象对应的函数为偶函数的是( )
| A. | 向左平移$\frac{π}{6}$个单位 | B. | 向右平移$\frac{π}{6}$个单位 | ||
| C. | 向左平移$\frac{5π}{12}$个单位 | D. | 向右平移$\frac{5π}{12}$个单位 |
4.已知△ABC是等腰直角三角形,点E,F是斜边AC的三等分点,则tan∠EBF=( )
| A. | $\frac{16}{27}$ | B. | $\frac{2}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{3}{4}$ |