题目内容

4.已知△ABC是等腰直角三角形,点E,F是斜边AC的三等分点,则tan∠EBF=(  )
A.$\frac{16}{27}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{3}{4}$

分析 由题意,设AC=6,点E,F是斜边AC的三等分点,可得EF=2.过B点作AC的垂下交于D,利用三角函数的定义可得tan∠DBF的值,利用二倍角可得答案.

解答 解:由题意,设AC=6,点E,F是斜边AC的三等分点,可得EF=2.过B点作AC的垂下交于D,∠DBF=∠DBE.
∵△ABC是等腰直角三角形,
AB=BC=$2\sqrt{3}$.DC=3
由勾股定理,可得:DB=3.
那么:tan∠DBF=$\frac{1}{3}$.
∴tan∠EBF=tan2∠DBF=$\frac{2tan∠DBF}{1-ta{n}^{2}∠DBF}$=$\frac{3}{4}$.
故选:D.

点评 本题考查了三角函数的定义的运用和等腰直角三角形的性质.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网