题目内容

15.设f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求:f($\frac{1}{2010}$)+f($\frac{1}{2009}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(2)+…+f(2009)+f(2010)

分析 化简可得f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1,从而求和.

解答 解:∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
∴f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1,
∴f($\frac{1}{2010}$)+f($\frac{1}{2009}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(2)+…+f(2009)+f(2010)
=(f($\frac{1}{2010}$)+f(2010))+(f($\frac{1}{2009}$)+f(2009))+…+(f($\frac{1}{3}$)+f(3))+(f($\frac{1}{2}$)+f(2))
=1+1+…+1+1
=2009.

点评 本题考查了函数的性质的判断与应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网