题目内容

设函数f(x)=ex-ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2
(1)求a的取值范围;
(2)证明:f′(
x1x2
)<0(f′(x)为函数f(x)的导函数);
(3)设点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记
x2-1
x1-1
=t,求(a-1)(t-1)的值.
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)由f(x)=ex-ax+a,知f′(x)=ex-a,再由a的符号进行分类讨论,能求出f(x)的单调区间,然后根据交点求出a的取值范围;
(2)由x1、x2的关系,求出f′(
x1+x2
2
)<0
,然后再根据f′(x)=ex-a的单调性,利用不等式的性质,问题得以证明;
(3)利用△ABC为等腰直角三角形的性质,求出y0+
x2-x1
2
=0
,然后得到关于参数a的方程at-
a
2
(1+t2)+
1
2
(t2-1)=0
,求得问题的答案.
解答: 解:(1)∵f(x)=ex-ax+a,
∴f'(x)=ex-a,
若a≤0,则f'(x)>0,则函数f(x)是单调增函数,这与题设矛盾.
∴a>0,令f'(x)=0,则x=lna,
当f'(x)<0时,x<lna,f(x)是单调减函数,
当f'(x)>0时,x>lna,f(x)是单调增函数,
于是当x=lna时,f(x)取得极小值,
∵函数f(x)=ex-ax+a(a∈R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2),
∴f(lna)=a(2-lna)<0,即a>e2
此时,存在1<lna,f(1)=e>0,
存在3lna>lna,f(3lna)=a3-3alna+a>a3-3a2+a>0,
又由f(x)在(-∞,lna)及(lna,+∞)上的单调性及曲线在R上不间断,
可知a>e2为所求取值范围.
(2)∵
ex1-ax1+a=0 
ex2-ax2+a=0 

∴两式相减得a=
ex2-ex1
x2-x1

x2-x1
2
=s(s>0)
,则f′(
x1+x2
2
)=e
x1+x2
2
-
ex2-ex1
x2-x1
=
e
x1+x2
2
2s
[2s-(es-e-s)]

设g(s)=2s-(es-e-s),
则g'(s)=2-(es+e-s)<0,
∴g(s)是单调减函数,
则有g(s)<g(0)=0,而
e
x1+x2
2
2s
>0

f′(
x1+x2
2
)<0

又f'(x)=ex-a是单调增函数,且
x1+x2
2
x1x2

f′(
x1x2
)<0
.                         
(3)依题意有exi-axi+a=0,则a(xi-1)=exi>0⇒xi>1(i=1,2).
于是e
x1+x2
2
=a
(x1-1)(x2-1)
,在等腰三角形ABC中,显然C=90°,
x0=
x1+x2
2
∈(xx2)
,即y0=f(x0)<0,
由直角三角形斜边的中线性质,可知
x2-x1
2
=-y0

y0+
x2-x1
2
=0

e
x1+x2
2
-
a
2
(x1+x2)+a+
x2-x1
2
=0

a
(x1-1)(x2-1)
-
a
2
(x1+x2)+a+
x2-x1
2
=0

a
(x1-1)(x2-1)
-
a
2
[(x1-1)+(x2-1)]+
(x2-1)-(x1-1)
2
=0

∵x1-1≠0,则a
x2-1
x1-1
-
a
2
(1+
x2-1
x1-1
)+
x2-1
x1-1
-1
2
=0

x2-1
x1-1
=t

at-
a
2
(1+t2)+
1
2
(t2-1)=0

a=1+
2
t-1

∴(a-1)(t-1)=2.
点评:本题属于难题,考察了分类讨论的思想,转化思想,方程思想,做题要认真仔细,方法要明,过程要严谨,能提高分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网