题目内容

19.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x>2}\\{(3a-5)(x-2)^{2}+2,x≤2}\end{array}\right.$是R上的单调递增函数,则实数a的取值范围为[$\sqrt{2}$,$\frac{5}{3}$).

分析 根据分段函数单调性的性质建立不等式关系进行求解即可.

解答 解:若函数f(x)是增函数,
则满足$\left\{\begin{array}{l}{a>1}\\{3a-5<0}\\{{a}^{2}≥2}\end{array}\right.$,即$\left\{\begin{array}{l}{a>1}\\{a<\frac{5}{3}}\\{a≥\sqrt{2}或a≤-\sqrt{2}}\end{array}\right.$,
即$\sqrt{2}$≤a<$\frac{5}{3}$,
故答案为:[$\sqrt{2}$,$\frac{5}{3}$).

点评 本题主要考查分段函数单调性的性质的应用,根据函数单调性的关系建立不等式组是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网