题目内容
6.若直线l的方向向量$\overrightarrow a=(1,1,1)$,平面α的一个法向量$\overrightarrow n=(2,-1,1)$,则直线l与平面α所成角的正弦值等于$\frac{{\sqrt{2}}}{3}$.分析 利用向量的夹角公式,即可求出直线l与平面α所成角的正弦值.
解答 解:∵直线l的方向向量$\overrightarrow a=(1,1,1)$,平面α的一个法向量$\overrightarrow n=(2,-1,1)$,
∴直线l与平面α所成的角的正弦值=|$\frac{2-1+1}{\sqrt{3}•\sqrt{4+1+1}}$|=$\frac{{\sqrt{2}}}{3}$.
故答案为$\frac{{\sqrt{2}}}{3}$.
点评 本题考查了线面几角的计算公式、向量夹角公式、数量积运算性质,考查了计算能力,属于基础题.
练习册系列答案
相关题目
15.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
(参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)
| 喜欢游泳 | 不喜欢游泳 | 合计 | |
| 男生 | 10 | ||
| 女生 | 20 | ||
| 合计 |
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
17.在2×2列联表中,两个比值相差越大,两个分类变量有关系的可能性就越大,那么这两个比值为( )
| A. | $\frac{a}{a+b}$与$\frac{c}{c+d}$ | B. | $\frac{a}{c+d}$与$\frac{c}{a+b}$ | C. | $\frac{a}{a+d}$与$\frac{c}{b+c}$ | D. | $\frac{a}{b+d}$与$\frac{c}{a+c}$ |
18.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为36,焦距为12,则椭圆的方程为( )
| A. | $\frac{x^2}{36}+\frac{y^2}{64}=1$ | B. | $\frac{x^2}{100}+\frac{y^2}{64}=1$ | ||
| C. | $\frac{x^2}{36}+\frac{y^2}{64}=1或\frac{x^2}{64}+\frac{y^2}{36}=1$ | D. | $\frac{x^2}{100}+\frac{y^2}{64}=1$或$\frac{x^2}{64}+\frac{y^2}{100}=1$ |