题目内容

已知F1,F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点,M为此双曲线上的一点,满足|MF1|=3|MF2|,那么此双曲线的离心率的取值范围是(  )
A、(1,2)
B、(1,2]
C、(0,2)
D、[2,+∞)
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据|MF1|=3|MF2|,利用双曲线的定义,结合|MF1|+|MF2|=4|MF2|≥2c,即可求出双曲线的离心率的取值范围.
解答: 解:由题意,∵|MF1|=3|MF2|,
∴|MF1|-|MF2|=2|MF2|=2a,|MF1|+|MF2|=4|MF2|≥2c,
∴4a≥2c,
∴e≤2,
∵e>1,
∴1<e≤2.
故选:B.
点评:本题考查双曲线离心率的计算问题.在求双曲线的离心率时,其关键是求出c,a之间的关系,即可求出双曲线的离心率,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网