题目内容

已知函数f(x)=lnx+a,g(x)=x-a.
(Ⅰ)当直线y=g(x)恰好为曲线y=f(x)的切线时,求a的值;
(Ⅱ)当a>0时,若函数F(x)=f(x)•g(x)在区间[e-
3
2
,1]上不单调,求a的取值范围;
(Ⅲ)若a∈Z且xf(x)+g(x)>0对一切x>1恒成立,求a的最小值.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的极值,利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(Ⅰ)利用导数的几何意义,结合直线y=g(x)恰好为曲线y=f(x)的切线,即可求a的值;
(Ⅱ)要使F(x)=f(x)•g(x)在区间[e-
3
2
,1]上不单调,只需满足F′(e-
3
2
)=1+a+lne-
3
2
-
a
e-
3
2
<0,即可求a的取值范围;
(Ⅲ)由题意x(lnx+a)+x-a>0对一切x>1成立等价于a>
xlnx+x
1-x
对一切x>1成立.求出右边的最小值,即可求a的最小值.
解答: 解:(Ⅰ)设切点为(x0,y0),则
∵f(x)=lnx+a,
∴f′(x)=
1
x

∵直线y=g(x)恰好为曲线y=f(x)的切线,
1
x0
=1,
∴x0=1,
∴切点为(1,a),
代入g(x)=x-a,可得1-a=a,∴a=
1
2

(Ⅱ)F(x)=f(x)•g(x)=(lnx+a)(x-a),
∴F′(x)=1+a+lnx-
a
x

∵a>0,∴在(0,+∞)上F′(x)单调递增,
∵F′(1)=1+a+ln1-a>0,
∴要使F(x)=f(x)•g(x)在区间[e-
3
2
,1]上不单调,
∴只需满足F′(e-
3
2
)=1+a+lne-
3
2
-
a
e-
3
2
<0,
解得a>
e
+1
2(e-1)

(Ⅲ)由题意x(lnx+a)+x-a>0对一切x>1成立等价于a>
xlnx+x
1-x
对一切x>1成立,
记h(x)=
xlnx+x
1-x
(x>1),则h′(x)=
2+lnx-x
(1-x)2

记m(x)=2+lnx-x(x>1),则m′(x)=
1
x
-1<0,
∴m(x)=2+lnx-x在(1,+∞)上单调递减,
∵m(3)=2+ln3-3>0,m(4)=ln4-2<0,
∴?x0∈(3,4),使得m(x0)=0
且x∈(1,x0),m(x)>0,h′(x)>0,h(x)在(1,x0)上单调递增;
x∈(x0,+∞),m(x)<0,h′(x)<0,h(x)在(x0,+∞)上单调递减;
∴h(x)min=h(x0)=
x0lnx0+x0
1-x0

∵m(x0)=0,∴2+lnx0-x0=0,∴lnx0=x0-2,
∴h(x0)=
x0lnx0+x0
1-x0
=-x0
∴a>-x0
∵x0∈(3,4),
∴-x0∈(-4,-3),
∵a∈Z,
∴a的最小值为-3.
点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的最值,考查学生分析解决问题的能力,难度大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网