题目内容
14.一般地,将连续的正整数1,2,…,n2填入n×n个方格中,使得每行,每列、每条对角线上的数的和相等,这个正方形叫做n阶幻方.记n阶幻方的对角线上数的和为Nn,例如N3=15,N4=34,N5=65…那么Nn=$\frac{n({n}^{2}+1)}{2}$.
分析 推导出Nn=$\frac{1}{n}$(1+2+3+4+5+…+n2),由此利用等差数列求和公式能求出结果.
解答 解:根据题意可知,幻方对角线上的数成等差数列,
N3=$\frac{1}{3}$(1+2+3+4+5+6+7+8+9)=15,
N4=$\frac{1}{4}$(1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16)=34,
N5=$\frac{1}{5}$(1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25)=65,
…
∴Nn=$\frac{1}{n}$(1+2+3+4+5+…+n2)=$\frac{1}{n}×\frac{{n}^{2}(1+{n}^{2})}{2}$=$\frac{n({n}^{2}+1)}{2}$.
故答案为:$\frac{n({n}^{2}+1)}{2}$.
点评 本题主要考查了等差数列的性质和等差数列的前n项和公式,本题解题的关键是应用等差数列的性质来解题.
练习册系列答案
相关题目
1.正数a、m、b构成公差为-$\frac{1}{2}$的等差数列,a,b的等比中项是2$\sqrt{5}$,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为( )
| A. | $\frac{5}{3}$ | B. | $\frac{\sqrt{41}}{4}$ | C. | $\frac{5}{4}$ | D. | $\frac{\sqrt{41}}{5}$ |
5.已知平面内一点p∈{(x,y)|(x-2cosθ)2+(y-2sinθ) 2=16,θ∈R},则满足条件的点P在平面内所组成的图形的面积是( )
| A. | 8π | B. | 16π | C. | 24π | D. | 32π |
9.已知点A,B,C在圆x2+y2=4上运动,且AB⊥BC.若点P的坐标为(3,4),则$|{\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}}|$的取值范围为( )
| A. | [10,15] | B. | [12,17] | C. | [13,17] | D. | [15,17] |
6.2017年5月14日至15日,中国在北京举办“一带一路”国际合作高峰论坛,与其它60多个成员国共商大计.设S是由不少于4个成员国代表组成的集合,如果S中任意4个代表都至少有1个人与另外3个人认识,那么下列判定正确的是( )
| A. | S中没有人认识S中所有的人 | B. | S中至少有1人认识S中所有的人 | ||
| C. | S中至多有2人不认识S中所有的人 | D. | S中至多有2人认识S中所有的人 |
3.下列各式正确的是( )
| A. | arctan(-1)=$\frac{3π}{4}$ | B. | arctan($\frac{1}{2}$)=$\frac{π}{6}$ | C. | arcsin(-$\frac{1}{2}$)=-$\frac{π}{6}$ | D. | arccos(-$\frac{1}{2}$)=-$\frac{π}{3}$ |