题目内容

14.我国的《洛书》中记载着世界上最古老的幻方:将1,2,…,9填入方格内,使三行、三列,两条对角线的三个数之和都等于15,如图所示.
一般地,将连续的正整数1,2,…,n2填入n×n个方格中,使得每行,每列、每条对角线上的数的和相等,这个正方形叫做n阶幻方.记n阶幻方的对角线上数的和为Nn,例如N3=15,N4=34,N5=65…那么Nn=$\frac{n({n}^{2}+1)}{2}$.

分析 推导出Nn=$\frac{1}{n}$(1+2+3+4+5+…+n2),由此利用等差数列求和公式能求出结果.

解答 解:根据题意可知,幻方对角线上的数成等差数列,
N3=$\frac{1}{3}$(1+2+3+4+5+6+7+8+9)=15,
N4=$\frac{1}{4}$(1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16)=34,
N5=$\frac{1}{5}$(1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25)=65,

∴Nn=$\frac{1}{n}$(1+2+3+4+5+…+n2)=$\frac{1}{n}×\frac{{n}^{2}(1+{n}^{2})}{2}$=$\frac{n({n}^{2}+1)}{2}$.
故答案为:$\frac{n({n}^{2}+1)}{2}$.

点评 本题主要考查了等差数列的性质和等差数列的前n项和公式,本题解题的关键是应用等差数列的性质来解题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网