题目内容

2.函数f(x)=xlnx的单调递减区间为(  )
A.$(0,\frac{1}{e})$B.$(-∞,\frac{1}{e})$C.(-∞,-e)D.$(\frac{1}{e},+∞)$

分析 求出函数的定义域,求出函数的导函数,令导函数小于等于0求出x的范围,写出区间形式即得到函数y=xlnx的单调递减区间.

解答 解:函数的定义域为x>0
∵f′(x)=lnx+1
令lnx+1<0得0<x<$\frac{1}{e}$,
∴函数f(x)=xlnx的单调递减区间是( 0,$\frac{1}{e}$),
故选:A.

点评 本题考查函数的单调区间的问题,一般求出导函数,令导函数大于0求出x的范围为单调递增区间;令导函数小于0求出x的范围为单调递减区间;注意单调区间是函数定义域的子集.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网