题目内容

13.已知函数f(x)=ax3+bx2+x(a,b∈R),且f(1)=0,f'(1)=0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)的极值.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据合适的单调性求出函数的极值即可.

解答 解:(Ⅰ)由f(x)=ax3+bx2+x,得:f′(x)=3ax2+2bx+1,
又f(1)=0,f′(1)=0,解得:a=1,b=-2,
所以f(x)=x3-2x2+x,
f′(x)=3x2-4x+1=(x-1)(3x-1),
令f′(x)>0,解得:x>1或x<$\frac{1}{3}$,
令f′(x)<0,解得:$\frac{1}{3}$<x<1,
∴f(x)在(-∞,$\frac{1}{3}$),(1,+∞)递增,在($\frac{1}{3}$,1);
(Ⅱ)由(Ⅰ)知:f(x),f′(x)的变化情况如下表:

x(-∞,$\frac{1}{3}$)$\frac{1}{3}$($\frac{1}{3}$,1)1(1,+∞)
f′(x)+0-0+
f(x)单调递增极大值$\frac{4}{27}$单调递减极小值0单调递增
∴x=$\frac{1}{3}$时,f(x)有极大值,且极大值为f($\frac{1}{3}$)=$\frac{4}{27}$,
当x=1,f(x)有极小值,且极小值为f(1)=0.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网