题目内容

已知函数f(x)=
3
sinx•cosx+sin2x.
(1)求函数f(x)的最小正周期及最小值;
(2)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,a=2,b+c=3,求△ABC的面积.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的图像与性质,解三角形
分析:(1)利用三角函数中的恒等变换可求得f(x)=sin(2x-
π
6
)+
1
2
,从而可得函数f(x)的最小正周期及最小值;
(2)由f(A)=
3
2
,可求得A=
π
3
,再利用余弦定理即可求得bc=
5
3
,从而可求△ABC的面积.
解答: 解:(1)依题意,得f(x)=
3
sinx•cosx+sin2x
=
3
2
sin2x+
1-cos2x
2
=sin(2x-
π
6
)+
1
2

∴f(x)的最小正周期为π,f(x)的最小值为-
1
2

(2)由f(A)=
3
2
,得sin(2A-
π
6
)+
1
2
=
3
2

∴sin(2A-
π
6
)=1,
∵A∈(0,π),∴2A∈(0,2π),2A-
π
6
∈(-
π
6
11π
6
),
∴2A-
π
6
=
π
2
,∴A=
π
3

∵a=2,b+c=3,
∴根据余弦定理得,4=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc=9-3bc,
bc=
5
3
,∴S△ABC=
1
2
bcsinA=
1
2
×
5
3
×
3
2
=
5
12
3
点评:本题考查三角函数中的恒等变换及其应用,考查余弦定理与正弦定理的应用,求得A=
π
3
是关键,考查运算求解能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网