题目内容
已知等比数列{an}的前n项和为Sn,且S1,S2+a2,S3成等差数列,则数列{an}的公比为( )
| A、1 | ||
| B、2 | ||
C、
| ||
| D、3 |
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:利用等比数列的前n项和公式表示出S1,S2,S3,然后根据S1,S2+a2,S3成等差数列,利用等差数列的性质列出关系式,将表示出的S1,S2,S3代入得到关于a1与q的关系式,由a1≠0,两边同时除以a1,得到关于q的方程,求出方程的解,即可得到公比q的值.
解答:
解:∵S1,S2+a2,S3成等差数列,
∴2(S2+a2)=S1+S3,又数列{an}为等比数列,
∴2(a1+2a1q)=a1+(a1+a1q+a1q2),
整理得:a1q2-3a1q=0,
又a1≠0,∴q2-3q=0,
∵q≠0,解得:q=3.
故选:D.
∴2(S2+a2)=S1+S3,又数列{an}为等比数列,
∴2(a1+2a1q)=a1+(a1+a1q+a1q2),
整理得:a1q2-3a1q=0,
又a1≠0,∴q2-3q=0,
∵q≠0,解得:q=3.
故选:D.
点评:此题考查了等差数列的性质,等比数列的通项公式、求和公式,熟练掌握公式及性质是解本题的关键.
练习册系列答案
相关题目
若函数f(x)=x2+x-a,则使得“函数y=f(x)在区间(-1,1)内有零点”成立的一个必要非充分条件是( )
A、-
| ||
B、-
| ||
| C、0<a<2 | ||
D、-
|
将函数f(x)=
sin2x+
cos2x的图象向右平移
个单位,再把横坐标扩大到原来的2倍得到函数y=g(x)的图象,下面结论正确的是( )
| 2 |
| 6 |
| π |
| 4 |
A、函数y=g(x)在[0,
| ||
B、函数y=g(x)图象的一个对称中心为(
| ||
C、函数y=g(x+φ)为偶函数时,其中一个φ=-
| ||
D、函数y=g(x)图象关于直线x=
|
阅读程序框图(如图),如果输出的函数值在区间[
,1]上,则输入的实数x的取值范围是( )

| 1 |
| 4 |
| A、(-∞,-2] |
| B、[-2,0] |
| C、[0,2] |
| D、[2,+∞) |
在长为10cm的线段AB上任取一点C,现作一个矩形,邻边长分别等于线段AC、CB的长,则该矩形的面积大于24cm2的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
已知集合A=(-1,2),集合B={x|-x2-2x+3>0},则A∪B=( )
| A、(-1,1) |
| B、(-3,2) |
| C、(-1,3) |
| D、(-1,2) |
已知f(x)=ax和g(x)=bx是指数函数,则“f(2)>g(2)”是“a>b”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |