题目内容
设Sn为等差数列{an}的前n项和,已知S3=a7,a8-2a3=3.
(Ⅰ)求an.
(Ⅱ)设bn=
,数列{bn}的前n行和记为Tn,求证:Tn>
-
(n∈N*)
(Ⅰ)求an.
(Ⅱ)设bn=
| 1 |
| Sn |
| 3 |
| 4 |
| 1 |
| n+1 |
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列的前n项和公式和通项公式,列出方程组,求出首项和公差,由此能求出an.
(Ⅱ)由(Ⅰ)求出bn=
=
(
-
)由此利用错位相减法求出列{bn}的前n行和Tn,由此能证明Tn>
-
(n∈N*).
(Ⅱ)由(Ⅰ)求出bn=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 3 |
| 4 |
| 1 |
| n+1 |
解答:
解:(Ⅰ)设数列{an}的公差为d,
由题得
,…(3分)
解得a1=3,d=2…(5分)
∴an=a1+(n-1)d=2n+1.…(6分)
(Ⅱ)由(Ⅰ)得,Sn=na1+
d=n(n+2)…(8分)
∴bn=
=
(
-
)…(10分)
∴Tn=b1+b2+…+bn-1+bn=
[(1-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)…(12分)
∴Tn=
(1+
-
-
)>
(1+
-
-
)=
-
,
∴Tn>
-
(n∈N*)…(13分)
由题得
|
解得a1=3,d=2…(5分)
∴an=a1+(n-1)d=2n+1.…(6分)
(Ⅱ)由(Ⅰ)得,Sn=na1+
| n(n-1) |
| 2 |
∴bn=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=b1+b2+…+bn-1+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 3 |
| 4 |
| 1 |
| n+1 |
∴Tn>
| 3 |
| 4 |
| 1 |
| n+1 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
已知等比数列{an}的前n项和为Sn,且S1,S2+a2,S3成等差数列,则数列{an}的公比为( )
| A、1 | ||
| B、2 | ||
C、
| ||
| D、3 |