题目内容

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log
1
4
an(n∈N*).
(1)求数列{an}、{bn}的通项公式;
(2)设数列{cn}满足cn=an•bn,求{cn}的前n项和Sn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由条件建立方程组即可求出数列{an}、{bn}的通项公式;
(2)根据错位相减法即可求{cn}的前n项和Sn
解答: 解:(1)∵a1=
1
4
an+1
an
=
1
4

∴数列{an}是公比为
1
4
的等比数列,∴an=(
1
4
)n(n∈N*)

bn=3log
1
4
an-2
,故 bn=3n-2(n∈N*).
(2)由(1)知,an=(
1
4
)nbn=3n-2(n∈N*)

cn=(3n-2)×(
1
4
)n,(n∈N*)

Sn=1×
1
4
+4×(
1
4
)2+7×(
1
4
)3+…+(3n-5)×(
1
4
)n-1+(3n-2)×(
1
4
)n

于是
1
4
Sn=1×(
1
4
)2+4×(
1
4
)3+7×(
1
4
)4+…+(3n-5)×(
1
4
)n+(3n-2)×(
1
4
)n+1

两式相减,得
3
4
Sn=
1
4
+3[(
1
4
)2+(
1
4
)3+…+(
1
4
)n]-(3n-2)×(
1
4
)n+1
=
1
2
-(3n+2)×(
1
4
)n+1

Sn=
2
3
-
3n+2
3
×(
1
4
)n(n∈N*)
点评:本题主要考查等差数列和等比数列的通项公式的计算,以及利用错位相减法进行求和的内容,考查学生的计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网