ÌâÄ¿ÄÚÈÝ
4£®Ä³¹¤³§ÎªÁ˶ÔÐÂÑз¢µÄÒ»ÖÖ²úÆ·½øÐкÏÀí¶¨¼Û£¬½«¸Ã²úÆ·°´ÊÂÏÈÄⶨµÄ¼Û¸ñ½øÐÐÊÔÏú£¬µÃµ½ÈçÏÂÊý¾Ý£º| µ¥¼Ûx£¨Ôª£© | 0.25 | 0.5 | 1 | 2 | 4 |
| ÏúÁ¿y£¨¼þ£© | 16 | 12 | 5 | 2 | 1 |
£¨2£©¸ù¾Ý£¨1£©µÄÅжϽá¹û¼°±íÖÐÊý¾Ý£¬½¨Á¢y¹ØÓÚxµÄ»Ø¹é·½³Ì£»£¨¼ÆËã½á¹û±£ÁôÁ½Î»Ð¡Êý£©
²Î¿¼¹«Ê½ÆäÖÐ$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£®
·ÖÎö £¨1£©¹Û²ì±í¸ñÊý¾Ý¿ÉÖªyÓëx³É·´±È¹ØÏµ£¬¹ÊÑ¡y=$\frac{c}{x}+d$£»
£¨2£©Áît=$\frac{1}{x}$£¬½«»Ø¹é·½³Ìת»¯ÎªÏßÐԻع鷽³Ì½â³ö£®
½â´ð ½â£º£¨1£©y=$\frac{c}{x}+d$¸üÊÊÒË×÷Ϊ²úÆ·ÏúÁ¿y¹ØÓÚµ¥¼ÛxµÄ»Ø¹é·½³Ì£®
£¨2£©Áît=$\frac{1}{x}$£¬Ôòy=tc+d£¬
ÔÊý¾Ý±äΪ£º
| t | 4 | 2 | 1 | 0.5 | 0.25 |
| y | 16 | 12 | 5 | 2 | 1 |
| ty | 64 | 24 | 5 | 1 | 0.25 |
| t2 | 16 | 4 | 1 | 0.25 | 0.0625 |
$\sum_{i=1}^{5}{t}_{i}{y}_{i}$=64+24+5+1+0.25=94.25£¬$\sum_{i=1}^{5}{{t}_{i}}^{2}$=16+4+1+0.25+0.0625=21.3125£®
¡àc=$\frac{94.25-5¡Á1.55¡Á7.2}{21.3125-5¡Á1.5{5}^{2}}$¡Ö4.13£®d=$\overline{y}$-c$\overline{t}$¡Ö0.8£®
¡ày=0.8+4.13 t£®
¡àyÓëxµÄ»Ø¹é·½³ÌÊÇy=0.8+$\frac{4.13}{x}$
µãÆÀ ±¾Ì⿼²éÁ˿ɻ¯ÎªÏßÐԻع鷽³ÌµÄÇó½â£¬¼ÆËã½Ï¸´ÔÓ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÒÑÖª¹ØÓÚijÉè¸÷µÄʹÓÃÄêÏÞx£¨µ¥Î»£ºÄ꣩ºÍËùÖ§³öµÄάÐÞ·ÑÓÃy£¨µ¥Î»£ºÍòÔª£©ÓÐÈçϵÄͳ¼Æ×ÊÁÏ£¬
ÓÉÉϱí¿ÉµÃÏßÐԻع鷽³Ì$\widehaty=\widehatbx+0.08$£¬Èô¹æ¶¨µ±Î¬ÐÞ·ÑÓÃy£¾12ʱ¸ÃÉè¸÷±ØÐ뱨·Ï£¬¾Ý´ËÄ£ÐÍÔ¤±¨¸ÃÉè¸÷ʹÓÃÄêÏÞµÄ×î´óֵΪ£¨¡¡¡¡£©
| x | 2 | 3 | 4 | 5 | 6 |
| y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
| A£® | 7 | B£® | 8 | C£® | 9 | D£® | 10 |
15£®¡°´æÔÚx¡ÊZ£¬Ê¹2x+m¡Ü0¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
| A£® | ´æÔÚx¡ÊZ£¬Ê¹2x+m£¾0 | B£® | ²»´æÔÚx¡ÊZ£¬Ê¹2x+m£¾0 | ||
| C£® | ¶ÔÈÎÒâx¡ÊZ£¬¶¼ÓÐ2x+m¡Ü0 | D£® | ¶ÔÈÎÒâx¡ÊZ£¬¶¼ÓÐ2x+m£¾0 |
19£®ÏÂÁк¯ÊýÊÇżº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | $y=\frac{1}{x}+x$ | B£® | y=x3 | C£® | $y=\sqrt{x}$ | D£® | y=x2+1 |
9£®Éèx£¬y¡ÊR£¬Ôò¡°x£¾y£¾0¡±ÊÇ¡°$\frac{x}{y}$£¾1¡±µÄ£¨¡¡¡¡£©
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |