题目内容

13.已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{1}{{a}_{n}^{2}-1}$(n∈N*),求数列{bn}的前n项和Tn

分析 (I)设等差数列{an}的公差为d,由a3=7,a5+a7=26,可得$\left\{\begin{array}{l}{{a}_{1}+2d=7}\\{2{a}_{1}+10d=26}\end{array}\right.$,解出利用等差数列的前n项和公式即可得出;
(Ⅱ)bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”即可得出.

解答 解:(I)设等差数列{an}的公差为d,∵a3=7,a5+a7=26,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=7}\\{2{a}_{1}+10d=26}\end{array}\right.$,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
∴数列{an}的前n项和Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
(Ⅱ)bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴数列{bn}的前n项和Tn=$\frac{1}{4}[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$=$\frac{n}{4n+4}$.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网