题目内容
13.已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和Sn.(Ⅰ)求an及Sn;
(Ⅱ)令bn=$\frac{1}{{a}_{n}^{2}-1}$(n∈N*),求数列{bn}的前n项和Tn.
分析 (I)设等差数列{an}的公差为d,由a3=7,a5+a7=26,可得$\left\{\begin{array}{l}{{a}_{1}+2d=7}\\{2{a}_{1}+10d=26}\end{array}\right.$,解出利用等差数列的前n项和公式即可得出;
(Ⅱ)bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”即可得出.
解答 解:(I)设等差数列{an}的公差为d,∵a3=7,a5+a7=26,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=7}\\{2{a}_{1}+10d=26}\end{array}\right.$,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
∴数列{an}的前n项和Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
(Ⅱ)bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴数列{bn}的前n项和Tn=$\frac{1}{4}[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$=$\frac{n}{4n+4}$.
点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
| 单价x(元) | 0.25 | 0.5 | 1 | 2 | 4 |
| 销量y(件) | 16 | 12 | 5 | 2 | 1 |
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(计算结果保留两位小数)
参考公式其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
| A. | $\frac{3}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{3}{8}$ | D. | $\frac{3}{16}$ |
| A. | [-$\frac{π}{6}$,$\frac{π}{6}$] | B. | [-$\frac{π}{4}$,0] | C. | (-$\frac{π}{3}$,-$\frac{π}{12}$] | D. | [0,$\frac{π}{4}$] |
| A. | (1,0,-3) | B. | (-1,0,3) | C. | (3,4,3) | D. | (1,0,3) |