题目内容
16.已知函数f(x)=|log2x|,g(x)=$\frac{1}{2}x$,若对任意x∈[a,+∞),总存在两个x0∈[$\frac{1}{2}$,4],使得g(x)•f(x0)=1,则实数a的取值范围是[2,+∞).分析 根据g(x)的值域和g(x)•f(x0)=1得出f(x0)的范围,结合f(x)的图象得出f(x0)的范围解出a.
解答 解:f(x0)=$\frac{1}{g(x)}$=$\frac{2}{x}$,∵x∈[a,+∞),∴f(x0)≤$\frac{2}{a}$,
作出f(x)在[$\frac{1}{2}$,4]上的函数图象如图:![]()
∵对任意x∈[a,+∞),总存在两个x0∈[$\frac{1}{2}$,4],使得g(x)•f(x0)=1,
∴0<$\frac{2}{a}$≤1,解得a≥2.
故答案为[2,+∞).
点评 本题考查了对数函数的图象与性质,结合函数图象是解题关键.
练习册系列答案
相关题目
6.若复数$\frac{a-3i}{1+i}$(a∈R,i为虚数单位)是纯虚数,则实数a的值为( )
| A. | 3 | B. | -3 | C. | 0 | D. | $\frac{3}{2}$ |
7.函数$f(x)=\sqrt{1-x}+{2^x}$的定义域为( )
| A. | (0,1) | B. | (0,1] | C. | (-∞,1] | D. | [1,+∞) |
4.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(1)根据上面的数据判断,y=ax+b与y=$\frac{c}{x}$+d哪一个适宜作为产品销量y关于单价x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(计算结果保留两位小数)
参考公式其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
| 单价x(元) | 0.25 | 0.5 | 1 | 2 | 4 |
| 销量y(件) | 16 | 12 | 5 | 2 | 1 |
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(计算结果保留两位小数)
参考公式其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
11.
如图,平面α⊥平面ABC,D为线段AB的中点,|AB|=2$\sqrt{3}$,∠CDB=30°,P为面α内的动点,且P到直线CD的距离为1,则∠APB的最大值为 )
| A. | 60° | B. | 90° | C. | 120° | D. | 150° |
1.已知实数a满足|a|<2,则事件“点M(1,1)与N(2,0)分别位于直线l:ax-2y+1=0两侧”的概率为( )
| A. | $\frac{3}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{3}{8}$ | D. | $\frac{3}{16}$ |
5.在空间直角坐标系中,A(1,2,3),B(2,2,0),则$\overrightarrow{AB}$=( )
| A. | (1,0,-3) | B. | (-1,0,3) | C. | (3,4,3) | D. | (1,0,3) |