题目内容

10.曲线的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{5}cosθ}\\{y=sinθ}\end{array},}\right.0≤θ<π$,则它的直角坐标方程为$\frac{{x}^{2}}{5}+{y}^{2}=1$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1.

分析 由θ的取值范围,求得x及y的取值范围,由椭圆的参数方程,即可求得直角坐标方程.

解答 解:由参数方程为$\left\{{\begin{array}{l}{x=\sqrt{5}cosθ}\\{y=sinθ}\end{array},}\right.0≤θ<π$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1
消去参数θ,则$\frac{{x}^{2}}{5}+{y}^{2}=1$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1,
故答案为:$\frac{{x}^{2}}{5}+{y}^{2}=1$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1.

点评 本题椭圆的参数方程,考查转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网