题目内容
等差数列{an}各项均为正数,求证:
+
+…+
=
.
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| n-1 | ||||
|
考点:等差数列的性质
专题:等差数列与等比数列
分析:由题意可得等差数列{an}各项均为正数,设其公差为d,当公差d≠0时可得
=
(
-
),代入计算可得等式,当公差d=0时,验证可得.
| 1 | ||||
|
| 1 |
| d |
| an |
| an-1 |
解答:
解:由题意可得等差数列{an}各项均为正数,设其公差为d,
当公差d≠0时,
=
=
=
(
-
)
∴
+
+…+
=
(
-
+
-
+…+
-
)
=
(
-
)=
(
-
)
=
•
=
•
=
•
=
当公差d=0时,
=
,易验证上式也成立
当公差d≠0时,
| 1 | ||||
|
| ||||||||
(
|
=
| ||||
| an-an-1 |
| 1 |
| d |
| an |
| an-1 |
∴
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
=
| 1 |
| d |
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
=
| 1 |
| d |
| an |
| a1 |
| 1 |
| d |
| an |
| a1 |
=
| 1 |
| d |
(
| ||||||||
|
=
| 1 |
| d |
| an-a1 | ||||
|
| 1 |
| d |
| (n-1)d | ||||
|
| n-1 | ||||
|
当公差d=0时,
| an |
| a1 |
点评:本题考查等差数列的性质和通项公式,涉及计分类讨论和分母有理化,属中档题.
练习册系列答案
相关题目