题目内容

等差数列{an}各项均为正数,求证:
1
a1
+
a2
+
1
a2
+
a3
+…+
1
an-1
+
an
=
n-1
an
+
a1
考点:等差数列的性质
专题:等差数列与等比数列
分析:由题意可得等差数列{an}各项均为正数,设其公差为d,当公差d≠0时可得
1
an-1
+
an
=
1
d
an
-
an-1
),代入计算可得等式,当公差d=0时,验证可得.
解答: 解:由题意可得等差数列{an}各项均为正数,设其公差为d,
当公差d≠0时,
1
an-1
+
an
=
an
-
an-1
(
an-1
+
an
)(
an
-
an-1
)

=
an
-
an-1
an-an-1
=
1
d
an
-
an-1

1
a1
+
a2
+
1
a2
+
a3
+…+
1
an-1
+
an

=
1
d
a2
-
a1
+
a3
-
a2
+…+
an
-
an-1

=
1
d
an
-
a1
)=
1
d
an
-
a1

=
1
d
(
an
-
a1
)(
an
+
a1
)
an
+
a1

=
1
d
an-a1
an
+
a1
=
1
d
(n-1)d
an
+
a1
=
n-1
an
+
a1

当公差d=0时,
an
=
a1
,易验证上式也成立
点评:本题考查等差数列的性质和通项公式,涉及计分类讨论和分母有理化,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网