ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£©µÄÓÒ½¹µãΪ£¨2$\sqrt{2}$£¬0£©£¬ÇÒ¹ýµãc£¾1£®£¨¢ñ£©ÇóÍÖÔ²¦£µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£ºy=x+m£¨m¡ÊR£©ÓëÍÖÔ²¦£½»ÓÚ²»Í¬Á½µãA¡¢B£¬ÇÒ|AB|=3$\sqrt{2}$£®ÈôµãP£¨x0£¬2£©Âú×ã|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|£¬Çóx0µÄÖµ£®
·ÖÎö £¨¢ñ£©¸ù¾Ýa£¬cµÄÖµ£¬Çó³öb£¬´Ó¶øÇó³öÍÖÔ²µÄ·½³Ì¼´¿É£»
£¨¢ò£©ÁªÁ¢Ö±ÏߺÍÍÖÔ²µÄ·½³Ì£¬¸ù¾Ý½»µãµÄ¸öÊýÅжÏmµÄ·¶Î§£¬ÉèABµÄÖеãΪE£¨x0£¬y0£©£¬Çó³öx0=$\frac{{{x}_{1}+x}_{2}}{2}$=-$\frac{3m}{4}$£¬y0=x0+m=$\frac{m}{4}$£¬µ±m=2ʱ£¬Çó³öÖ±Ïß·½³ÌÊÇy=-x-1£¬Çó³ö¶ÔÓ¦µÄxµÄÖµ£¬µ±m=-2ʱ£¬Çó³öÖ±Ïß·½³ÌÊÇy=-x+1£¬Çó³ö¶ÔÓ¦µÄxµÄÖµ¼´¿É£®
½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖªµÃa=2$\sqrt{3}$£¬ÓÖ$c=2\sqrt{2}$
¡àb2=a2-c2=4
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©ÓÉ$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£®µÃ4x2+6mx+3m2-12=0 ¢Ù
¡ßÖ±ÏßlÓëÍÖÔ²½»ÓÚ²»Í¬Á½µãA¡¢B£¬¡à¡÷=36m2-16£¨3m2-12£©£¾0£¬
µÃm2£¼16£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇ·½³Ì¢ÙµÄÁ½¸ù£¬
Ôòx1+x2=-$\frac{3m}{2}$£¬${x_1}•{x_2}=\frac{{3{m^2}-12}}{4}$£®
¡à$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{2}¡Á\sqrt{\frac{9}{4}{m^2}-£¨3{m^2}-12£©}=\sqrt{2}¡Á\sqrt{-\frac{3}{4}{m^2}+12}$£®
ÓÖÓÉ$|{AB}|=3\sqrt{2}$£¬µÃ$-\frac{3}{4}{m^2}+12=9$£¬½âÖ®y=-x+1
¾ÝÌâÒâÖª£¬µãPΪÏß¶ÎABµÄÖд¹ÏßÓëÖ±Ïßy=2µÄ½»µã£®
ÉèABµÄÖеãΪE£¨x0£¬y0£©£¬Ôòx0=$\frac{{{x}_{1}+x}_{2}}{2}$=-$\frac{3m}{4}$£¬y0=x0+m=$\frac{m}{4}$£¬
?µ±m=2ʱ£¬$E£¨-\frac{3}{2}£¬\frac{1}{2}£©$
¡à´Ëʱ£¬Ïß¶ÎABµÄÖд¹Ïß·½³ÌΪy-$\frac{1}{2}$=-£¨x+$\frac{3}{2}$£©£¬¼´y=-x-1£¬
Áîy=2£¬µÃx0=-3£¬
?µ±m=-2ʱ£¬E£¨$\frac{3}{2}$£¬-$\frac{1}{2}$£©£¬
¡à´Ëʱ£¬Ïß¶Îm=1µÄÖд¹Ïß·½³ÌΪy+$\frac{1}{2}$=-£¨x-$\frac{3}{2}$£©£¬¼´y=-x+1£¬
Áî$£¨0£¬\frac{1}{2}£©$£¬µÃx0=-1£®
µãÆÀ ±¾Ì⿼²éÁËÇóÍÖÔ²µÄ·½³ÌÎÊÌ⣬¿¼²éÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµÒÔ¼°Î¤´ï¶¨ÀíµÄÓ¦Óá¢Öеã×ø±ê¹«Ê½£¬ÊÇÒ»µÀ×ÛºÏÌ⣮
| A£® | £¨cos¦Á£¬sin¦Á£© | B£® | £¨cos¦Á£¬-sin¦Á£© | C£® | £¨sin¦Á£¬-cos¦Á£© | D£® | £¨sin¦Á£¬cos¦Á£© |