题目内容
数列{an}的前n项和为Sn,满足Sn=n2+2n.等比数列{bn}满足:b1=3,b4=81.
(1)求证:数列{an}为等差数列;
(2)若Tn=
+
+
+…+
,求Tn.
(1)求证:数列{an}为等差数列;
(2)若Tn=
| a1 |
| b1 |
| a2 |
| b2 |
| a3 |
| b3 |
| an |
| bn |
考点:数列的求和
专题:
分析:(1)由Sn=n2+2n,得a1=S1=3,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,由此能证明{an}为等差数列.
(2)由已知条件求出bn=3,从而得到
=
,由此利用错位相减法能求出Tn=
+
+
+…+
.
(2)由已知条件求出bn=3,从而得到
| an |
| bn |
| 2n+1 |
| 3n |
| a1 |
| b1 |
| a2 |
| b2 |
| a3 |
| b3 |
| an |
| bn |
解答:
(1)证明:∵数列{an}的前n项和为Sn,满足Sn=n2+2n,
∴n=1时,a1=S1=1+2=3,…(2分)
n≥2且n∈N*时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1
经检验a1亦满足an=2n+1,
∴an=2n+1(n∈N*)…(5分)
∴an+1-an=[2(n+1)+1]-(2n+1)=2为常数
∴{an}为等差数列,且通项公式为an=2n+1(n∈N*)…(7分)
(2)解:设等比数列{bn}的公比为q,则q3=
=27,
∴q=3,则bn=3×3n-1=3n,n∈N*,
∴
=
…(9分)
∴Tn=
+
+
+…+
,①
Tn=
+
+
+…+
+
,②
①-②得:
Tn=1+2(
+
+
…+
)-
=1+2×
-
=
-
…(13分)
∴Tn=2-
,n∈N*…(15分)
∴n=1时,a1=S1=1+2=3,…(2分)
n≥2且n∈N*时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1
经检验a1亦满足an=2n+1,
∴an=2n+1(n∈N*)…(5分)
∴an+1-an=[2(n+1)+1]-(2n+1)=2为常数
∴{an}为等差数列,且通项公式为an=2n+1(n∈N*)…(7分)
(2)解:设等比数列{bn}的公比为q,则q3=
| b4 |
| b1 |
∴q=3,则bn=3×3n-1=3n,n∈N*,
∴
| an |
| bn |
| 2n+1 |
| 3n |
∴Tn=
| 3 |
| 3 |
| 5 |
| 32 |
| 7 |
| 33 |
| 2n+1 |
| 3n |
| 1 |
| 3 |
| 3 |
| 32 |
| 5 |
| 33 |
| 7 |
| 34 |
| 2n-1 |
| 3n |
| 2n+1 |
| 3n+1 |
①-②得:
| 2 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| 3n |
| 2n+1 |
| 3n+1 |
| ||||
1-
|
| 2n+1 |
| 3n+1 |
| 4 |
| 3 |
| 2n+4 |
| 3n+1 |
∴Tn=2-
| n+2 |
| 3n |
点评:本题考查等差数列的证明,考查数列的前n项和的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目