ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$£¨tÊDzÎÊý£©£¬ÒÔÔµãO Ϊ¼«µã£¬O xΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²C µÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2cos£¨¦È+\frac{¦Ð}{4}£©$£®£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÔ²ÐÄC µÄÖ±½Ç×ø±ê£»
£¨2£©ÓÉÖ±ÏßlÉϵĵãÏòÔ²CÒýÇÐÏߣ¬ÇóÇÐÏß³¤µÄ×îСֵ£®
·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄ»¥»¯·½·¨£¬¼´¿ÉÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÔ²ÐÄC µÄÖ±½Ç×ø±ê£»
£¨2£©Ô²CµÄ°ë¾¶r=1£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¼´¿ÉÇóÇÐÏß³¤µÄ×îСֵ£®
½â´ð ½â£º£¨1£©Ö±ÏßlµÄÆÕͨ·½³ÌΪ$y=x+4\sqrt{2}$£»
ÓÖ$¦Ñ=2cos£¨¦È+\frac{¦Ð}{4}£©$£¬${¦Ñ^2}=\sqrt{2}¦Ñcos¦È-\sqrt{2}¦Ñsin¦È$
¡àÔ²CµÄÆÕͨ·½³ÌΪ${x^2}+{y^2}=\sqrt{2}x-\sqrt{2}y$£¬¼´${x^2}+{y^2}-\sqrt{2}x+\sqrt{2}y=0$
Ô²ÐÄCµÄÖ±½Ç×ø±êΪ $£¨\frac{{\sqrt{2}}}{2}£¬-\frac{{\sqrt{2}}}{2}£©$£»
£¨2£©Ô²CµÄ°ë¾¶r=1£¬Ô²Ðĵ½Ö±ÏߵľàÀë$d=\frac{{|\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}+4\sqrt{2}|}}{{\sqrt{2}}}=5$
¡àÇÐÏß³¤µÄ×îСֵΪ$\sqrt{{d^2}-{r^2}}=\sqrt{{5^2}-{1^2}}=\sqrt{6¡Á4}=2\sqrt{6}$£®
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¯£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿