题目内容

6.对于函数f(x),定义f0(x)=f(x),f1(x)=f'0(x),…,fn(x)=f'n-1(x)(n∈N*),若f(x)=cosx,则f2014(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

分析 求函数的导数,根据条件判断导数的周期性进行求解即可.

解答 解:∵f0(x)=f(x)=cosx,
∴f1(x)=f'0(x)=-sinx,
f2(x)=f'1(x)=-cosx,
f3(x)=f'2(x)=sinx,
f4(x)=f'3(x)=cosx,
…,
∴fn(x)是周期为4的周期函数,
则f2014(x)=f503×4+2(x)=f2(x)=-cosx,
故选:D

点评 本题主要考查函数的导数的计算,根据条件求出函数的周期性是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网