题目内容
15.已知F1、F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,过点F1的直线与双曲线C的左、右两支分别交于P、Q两点,|F1P|、|F2P|、|F1Q|成等差数列,且∠F1PF2=120°,则双曲线C的离心率是( )| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
分析 设|F1P|=m,运用双曲线的定义和等差数列的中项的性质可得|F2P|=m+2a,|F1Q|=4a+m,|PQ|=4a,由条件可得△QPF2为等边三角形,可得m+2a=4a,解得m=2a,在△F1PF2中,由余弦定理可得c=$\sqrt{7}$a,由离心率公式计算即可得到所求值.
解答
解:设|F1P|=m,由双曲线的定义可得|F2P|=|F1P|+2a=m+2a,
由|F1P|、|F2P|、|F1Q|成等差数列,可得2|F2P|=|F1P|+|F1Q|,
即有|F1Q|=2(2a+m)-m=4a+m,
可得|PQ|=4a,
由双曲线的定义,可得|F2Q|=|F1Q|-2a=m+2a,
由∠F1PF2=120°,可得∠QPF2=60°,
即有△QPF2为等边三角形,可得m+2a=4a,解得m=2a,
在△F1PF2中,由余弦定理可得
|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos120°,
即为4c2=4a2+16a2-2•2a•4a•(-$\frac{1}{2}$),
即有4c2=28a2,即c=$\sqrt{7}$a,
可得e=$\frac{c}{a}$=$\sqrt{7}$.
故选:D.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,同时考查等差数列的中项的性质,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
5.P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上的一点,F1,F2是焦点,PF1与渐近线平行,∠F1PF2=90°,则双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
6.过双曲线x2-$\frac{y^2}{15}$=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为( )
| A. | 10 | B. | 13 | C. | 16 | D. | 19 |
10.已知定义在R上的函数f(x)满足f(x-1)=f(1-x),且x≥0时,f(x)=2|x-m|-2,f(-1)=-1,则f(x)<0的解集为( )
| A. | (-∞,-2)∪(2,+∞) | B. | (-2,2) | C. | (0,2) | D. | (-2,0)∪(0,2) |
20.不等式$\frac{1+x}{1-x}$≥0的解集为( )
| A. | {x|x≥1或≤-1} | B. | {x|-1≤x≤1} | C. | {x|x≥1或x<-1} | D. | {x|-1≤x<1} |