题目内容

将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有1个小球,且每个盒子中的小球个数都不同,则共有
 
种不同放法.
考点:排列、组合的实际应用
专题:计算题
分析:根据题意,先用挡板法分析每个盒子中至少有1个小球的情况数目,再分类讨论有盒子中的小球个数相同的放法,利用间接法可得结论.
解答: 解:先考虑每个盒子中至少有1个小球,
用挡板法,9个球中间8个空,插入两个板,共有C82=28种,
其中每个盒子中的小球个数都相同时,有1种放法;
两个盒子中的小球个数都相同时,包括:1、1、7;2、2、5;4、4、1,三种情况,每种情况各有3种放法,共9种放法;
所以不同的放法共有28-1-9=18种放法;
故答案为18.
点评:本题考查排列、组合的应用,利用间接法分析可以避免大量的分类讨论与复杂的计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网