题目内容
| CA |
| a |
| CB |
| b |
| a |
| b |
| AP |
考点:向量的几何表示
专题:平面向量及应用
分析:依题意,可求得
=
+
=
+
,
=-
+
,由
+
=
=-
,可得
+
=-
,将前边的两个式子代入,整理可得
=-
+
.
| CR |
| CA |
| AR |
| a |
| 1 |
| 2 |
| AP |
| BQ |
| b |
| 1 |
| 2 |
| CR |
| PQ |
| QR |
| PR |
| 1 |
| 2 |
| AP |
| BQ |
| CR |
| AP |
| AP |
| 6 |
| 7 |
| a |
| 4 |
| 7 |
| b |
解答:
解:∵在△ABC中,P、Q、R分别为BQ、CR、AP的中点,
=
,
=
,
∴
=
+
=
+
,
同理可得,
=-
+
,
∵
+
=
=-
,即
+
=-
,
∴
+
=-
,即-
+
=-
+
(
+
)=-
,
∴
=-
+
,
解得:
=-
+
.
| CA |
| a |
| CB |
| b |
∴
| CR |
| CA |
| AR |
| a |
| 1 |
| 2 |
| AP |
同理可得,
| BQ |
| b |
| 1 |
| 2 |
| CR |
∵
| PQ |
| QR |
| PR |
| 1 |
| 2 |
| AP |
| 1 |
| 2 |
| BQ |
| 1 |
| 2 |
| CR |
| 1 |
| 2 |
| AP |
∴
| BQ |
| CR |
| AP |
| b |
| 3 |
| 2 |
| CR |
| b |
| 3 |
| 2 |
| a |
| 1 |
| 2 |
| AP |
| AP |
∴
| 7 |
| 4 |
| AP |
| 3 |
| 2 |
| a |
| b |
解得:
| AP |
| 6 |
| 7 |
| a |
| 4 |
| 7 |
| b |
点评:本题考查向量的几何表示,利用
+
=
=-
是解决问题的关键,考查观察与转化、运算能力,属于中档题.
| PQ |
| QR |
| PR |
| 1 |
| 2 |
| AP |
练习册系列答案
相关题目
函数f(x)=
,则f(-1)=( )
|
|
| A、2 | B、-2 |
| C、e | D、e-1 |
已知x,y满足条件
(k为常数),若目标函数z=x+3y的最大值为8,则k=( )
|
| A、16 | ||
| B、8 | ||
C、
| ||
| D、6 |