题目内容
3.直线l与抛物线y2=6x交于A,B两点,圆(x-6)2+y2=r2与直线l相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )| A. | ($\sqrt{3}$,2$\sqrt{3}$) | B. | ($\sqrt{3}$,3$\sqrt{3}$) | C. | (3,$2\sqrt{3}$) | D. | (3,3$\sqrt{3}$) |
分析 先确定M的轨迹是直线x=3,代入抛物线方程可得y=±3$\sqrt{2}$,利用M在圆上,(x0-6)2+y02=r2,r2=y02+9≤18+9=27,即可得出结论.
解答 解:设A(x1,y1),B(x2,y2),M(x0,y0),
斜率存在时,设斜率为k,则y12=6x1,y22=6x2,
相减得(y1+y2)(y1-y2)=6(x1-x2),
当l的斜率存在时,利用点差法可得ky0=3,
因为直线与圆相切,所以$\frac{{y}_{0}}{{x}_{0}-6}=-\frac{1}{k}$,所以x0=3,
即M的轨迹是直线x=3.
将x=3代入y2=6x,得y2=18,
∴-3$\sqrt{2}$<y0<3$\sqrt{2}$,
∵M在圆上,
∴(x0-6)2+y02=r2,
∴r2=y02+9≤18+9=27,
∵直线l恰有4条,
∴y0≠0,
∴9<r2<27,
故3<r<3$\sqrt{3}$时,直线l有2条;
斜率不存在时,直线l有2条;
所以直线l恰有4条,3<r<3$\sqrt{3}$,
故选:D.
点评 本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
14.下列命题中,为真命题的是( )
| A. | ?x0∈R,使得${e^{x_0}}≤0$ | |
| B. | $sinx+\frac{1}{sinx}≥2(x≠kπ,k∈Z)$ | |
| C. | ?x∈R,2x>x2 | |
| D. | 若命题p:?x0∈R,使得$x_0^2-{x_0}+1<0$,则¬p:?x0∈R,都有x2-x+1≥0 |
18.若函数f(x+3)的定义域为[-5,-2],则F(x)=f(x+1)•f(x-1)定义域为( )
| A. | [-3,2] | B. | [-7,-6] | C. | [-9,-4] | D. | [-1,0] |
15.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆x2+y2=a2的切线,切点为E,延长FE交双曲线于点P,O为坐标原点,若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),则双曲线的离心率为( )
| A. | $\frac{1+\sqrt{5}}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{1+\sqrt{3}}{2}$ |