题目内容
13.已知数列{an},${a_1}=\frac{1}{4}\;,\;{a_n}+{a_{n+1}}=\frac{5}{{{4^{n+1}}}}$,则an=$\left\{\begin{array}{l}{\frac{1}{24}+\frac{1}{3×1{6}^{k}},n=2k}\\{\frac{14}{3×1{6}^{k}}-\frac{1}{24},n=2k-1}\end{array}\right.$,k∈N*.分析 数列{an},${a_1}=\frac{1}{4}\;,\;{a_n}+{a_{n+1}}=\frac{5}{{{4^{n+1}}}}$,an+1+an+2=$\frac{5}{{4}^{n+2}}$.可得an+2-an=-$\frac{5}{{4}^{n+2}}$.n=2k(k∈N*)时,a2k+2-a2k=$\frac{5}{{4}^{2k+2}}$.利用an=(a2k-a2k-2)+(a2k-2-a2k-4)+…+(a4-a2)+a2,即可得出.n=2k-1(k∈N*)时,a2k-1+a2k=$\frac{5}{{4}^{2k}}$,即可得出.
解答 解:∵数列{an},${a_1}=\frac{1}{4}\;,\;{a_n}+{a_{n+1}}=\frac{5}{{{4^{n+1}}}}$,
∴an+1+an+2=$\frac{5}{{4}^{n+2}}$.
∴an+2-an=-$\frac{5}{{4}^{n+2}}$.
∴n=2k(k∈N*)时,a2k+2-a2k=$\frac{5}{{4}^{2k+2}}$.
∴an=(a2k-a2k-2)+(a2k-2-a2k-4)+…+(a4-a2)+a2
=-$\frac{5}{{4}^{2k}}$-$\frac{5}{{4}^{2k-2}}$-…-$\frac{5}{{4}^{4}}$+$\frac{1}{{4}^{2}}$=-$\frac{5×\frac{1}{256}(1-\frac{1}{1{6}^{k-1}})}{1-\frac{1}{16}}$+$\frac{1}{16}$=$\frac{1}{24}$+$\frac{1}{3×1{6}^{k}}$.
n=2k-1(k∈N*)时,a2k-1+a2k=$\frac{5}{{4}^{2k}}$,
∴a2k-1=$\frac{5}{1{6}^{k}}$-$(\frac{1}{24}+\frac{1}{3×1{6}^{k}})$=$\frac{14}{3×1{6}^{k}}$-$\frac{1}{24}$.
∴an=$\left\{\begin{array}{l}{\frac{1}{24}+\frac{1}{3×1{6}^{k}},n=2k}\\{\frac{14}{3×1{6}^{k}}-\frac{1}{24},n=2k-1}\end{array}\right.$,k∈N*.
故答案为:$\left\{\begin{array}{l}{\frac{1}{24}+\frac{1}{3×1{6}^{k}},n=2k}\\{\frac{14}{3×1{6}^{k}}-\frac{1}{24},n=2k-1}\end{array}\right.$,k∈N*.
点评 本题考查了数列的递推关系、等比数列的求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.
| A. | 若log2x+2x=log2y+3y,则x>y | B. | 若log2x+2x=log2y+3y,则x<y | ||
| C. | 若log2x-2x=log2y-3y,则x>y | D. | 若log2x-2x=log2y-3y,则x<y |
| A. | a<ab<ab2 | B. | ab<a<ab2 | C. | ab<ab2<a | D. | ab2<a<ab |
| A. | $\frac{3}{4}$ | B. | $\frac{15}{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{5}{3}$ |
| A. | ($\sqrt{3}$,2$\sqrt{3}$) | B. | ($\sqrt{3}$,3$\sqrt{3}$) | C. | (3,$2\sqrt{3}$) | D. | (3,3$\sqrt{3}$) |